60 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <div>Teachable Machine Image Model</div>
 | |
| <button type="button" onclick="init()">Start</button>
 | |
| <div id="webcam-container"></div>
 | |
| <div id="label-container"></div>
 | |
| <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest/dist/tf.min.js"></script>
 | |
| <script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@latest/dist/teachablemachine-image.min.js"></script>
 | |
| <script type="text/javascript">
 | |
|     // More API functions here:
 | |
|     // https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
 | |
| 
 | |
|     // the link to your model provided by Teachable Machine export panel
 | |
|     const URL = "https://teachablemachine.withgoogle.com/models/0z9_XB2UA/";
 | |
| 
 | |
|     let model, webcam, labelContainer, maxPredictions;
 | |
| 
 | |
|     // Load the image model and setup the webcam
 | |
|     async function init() {
 | |
|         const modelURL = URL + "model.json";
 | |
|         const metadataURL = URL + "metadata.json";
 | |
| 
 | |
|         // load the model and metadata
 | |
|         // Refer to tmImage.loadFromFiles() in the API to support files from a file picker
 | |
|         // or files from your local hard drive
 | |
|         // Note: the pose library adds "tmImage" object to your window (window.tmImage)
 | |
|         model = await tmImage.load(modelURL, metadataURL);
 | |
|         maxPredictions = model.getTotalClasses();
 | |
| 
 | |
|         // Convenience function to setup a webcam
 | |
|         const flip = true; // whether to flip the webcam
 | |
|         webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip
 | |
|         await webcam.setup(); // request access to the webcam
 | |
|         await webcam.play();
 | |
|         window.requestAnimationFrame(loop);
 | |
| 
 | |
|         // append elements to the DOM
 | |
|         document.getElementById("webcam-container").appendChild(webcam.canvas);
 | |
|         labelContainer = document.getElementById("label-container");
 | |
|         for (let i = 0; i < maxPredictions; i++) { // and class labels
 | |
|             labelContainer.appendChild(document.createElement("div"));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     async function loop() {
 | |
|         webcam.update(); // update the webcam frame
 | |
|         await predict();
 | |
|         window.requestAnimationFrame(loop);
 | |
|     }
 | |
| 
 | |
|     // run the webcam image through the image model
 | |
|     async function predict() {
 | |
|         // predict can take in an image, video or canvas html element
 | |
|         const prediction = await model.predict(webcam.canvas);
 | |
|         for (let i = 0; i < maxPredictions; i++) {
 | |
|             const classPrediction =
 | |
|                 prediction[i].className + ": " + prediction[i].probability.toFixed(2);
 | |
|             labelContainer.childNodes[i].innerHTML = classPrediction;
 | |
|         }
 | |
|     }
 | |
| </script>
 |