60 lines
2.6 KiB
HTML
60 lines
2.6 KiB
HTML
|
<div>Teachable Machine Image Model</div>
|
||
|
<button type="button" onclick="init()">Start</button>
|
||
|
<div id="webcam-container"></div>
|
||
|
<div id="label-container"></div>
|
||
|
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest/dist/tf.min.js"></script>
|
||
|
<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@latest/dist/teachablemachine-image.min.js"></script>
|
||
|
<script type="text/javascript">
|
||
|
// More API functions here:
|
||
|
// https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
|
||
|
|
||
|
// the link to your model provided by Teachable Machine export panel
|
||
|
const URL = "https://teachablemachine.withgoogle.com/models/0z9_XB2UA/";
|
||
|
|
||
|
let model, webcam, labelContainer, maxPredictions;
|
||
|
|
||
|
// Load the image model and setup the webcam
|
||
|
async function init() {
|
||
|
const modelURL = URL + "model.json";
|
||
|
const metadataURL = URL + "metadata.json";
|
||
|
|
||
|
// load the model and metadata
|
||
|
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
|
||
|
// or files from your local hard drive
|
||
|
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
|
||
|
model = await tmImage.load(modelURL, metadataURL);
|
||
|
maxPredictions = model.getTotalClasses();
|
||
|
|
||
|
// Convenience function to setup a webcam
|
||
|
const flip = true; // whether to flip the webcam
|
||
|
webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip
|
||
|
await webcam.setup(); // request access to the webcam
|
||
|
await webcam.play();
|
||
|
window.requestAnimationFrame(loop);
|
||
|
|
||
|
// append elements to the DOM
|
||
|
document.getElementById("webcam-container").appendChild(webcam.canvas);
|
||
|
labelContainer = document.getElementById("label-container");
|
||
|
for (let i = 0; i < maxPredictions; i++) { // and class labels
|
||
|
labelContainer.appendChild(document.createElement("div"));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
async function loop() {
|
||
|
webcam.update(); // update the webcam frame
|
||
|
await predict();
|
||
|
window.requestAnimationFrame(loop);
|
||
|
}
|
||
|
|
||
|
// run the webcam image through the image model
|
||
|
async function predict() {
|
||
|
// predict can take in an image, video or canvas html element
|
||
|
const prediction = await model.predict(webcam.canvas);
|
||
|
for (let i = 0; i < maxPredictions; i++) {
|
||
|
const classPrediction =
|
||
|
prediction[i].className + ": " + prediction[i].probability.toFixed(2);
|
||
|
labelContainer.childNodes[i].innerHTML = classPrediction;
|
||
|
}
|
||
|
}
|
||
|
</script>
|