5899 lines
284 KiB
Plaintext
5899 lines
284 KiB
Plaintext
{
|
||
"nbformat": 4,
|
||
"nbformat_minor": 0,
|
||
"metadata": {
|
||
"colab": {
|
||
"provenance": [],
|
||
"gpuType": "T4"
|
||
},
|
||
"kernelspec": {
|
||
"name": "python3",
|
||
"display_name": "Python 3"
|
||
},
|
||
"language_info": {
|
||
"name": "python"
|
||
},
|
||
"accelerator": "GPU",
|
||
"widgets": {
|
||
"application/vnd.jupyter.widget-state+json": {
|
||
"ef495d16dd1a4f23be512d86f4b2800b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_a71f86b74b7f42d88266be2bc79a2c30",
|
||
"IPY_MODEL_cb557d42a7d345c0934604036a93bc10",
|
||
"IPY_MODEL_c95e9deefff24265bb7aaefcee32a044"
|
||
],
|
||
"layout": "IPY_MODEL_7c4e99924b9449bc8a930002d8ba83fc"
|
||
}
|
||
},
|
||
"a71f86b74b7f42d88266be2bc79a2c30": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_750d241ac10e4d06903aad102164d983",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_aa9cce0280794b9aae6074653ec61636",
|
||
"value": "Fetching 10 files: 100%"
|
||
}
|
||
},
|
||
"cb557d42a7d345c0934604036a93bc10": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1946cfddd06743b588ae787a0cea42aa",
|
||
"max": 10,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_c0625a79528f48dc8ee64459d2909b79",
|
||
"value": 10
|
||
}
|
||
},
|
||
"c95e9deefff24265bb7aaefcee32a044": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_adb22899471442589285fd41312a503f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_a6e55e6f062143e7823fc585a530fc56",
|
||
"value": " 10/10 [00:15<00:00, 2.67s/it]"
|
||
}
|
||
},
|
||
"7c4e99924b9449bc8a930002d8ba83fc": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"750d241ac10e4d06903aad102164d983": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"aa9cce0280794b9aae6074653ec61636": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"1946cfddd06743b588ae787a0cea42aa": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"c0625a79528f48dc8ee64459d2909b79": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"adb22899471442589285fd41312a503f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a6e55e6f062143e7823fc585a530fc56": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"c4f91f5988cf4e2abababec9e5904a73": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_686fe40fc8924f65843cd6029d719bc5",
|
||
"IPY_MODEL_34de9719c9ee465493ae92912eff1989",
|
||
"IPY_MODEL_a97203da20354f708de631b59fc42e0e"
|
||
],
|
||
"layout": "IPY_MODEL_e4188c6d219141f7bd1e15dd05d1bb1a"
|
||
}
|
||
},
|
||
"686fe40fc8924f65843cd6029d719bc5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1133635a5e6947de89b7ba00339d8fc5",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_b68f3994adc24215bbe0b07329a7a811",
|
||
"value": ".gitattributes: "
|
||
}
|
||
},
|
||
"34de9719c9ee465493ae92912eff1989": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b4fa7ff09fc149309150fb56acf5cb92",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_6a0623311261475f989c6d8e3e17cb87",
|
||
"value": 1
|
||
}
|
||
},
|
||
"a97203da20354f708de631b59fc42e0e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_9fc84d5a4ffd47858ee1ff674d5b2b68",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_351b929d9fd442328f0b9cf8af9c8f0f",
|
||
"value": " 1.52k/? [00:00<00:00, 28.6kB/s]"
|
||
}
|
||
},
|
||
"e4188c6d219141f7bd1e15dd05d1bb1a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1133635a5e6947de89b7ba00339d8fc5": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b68f3994adc24215bbe0b07329a7a811": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"b4fa7ff09fc149309150fb56acf5cb92": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": "20px"
|
||
}
|
||
},
|
||
"6a0623311261475f989c6d8e3e17cb87": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"9fc84d5a4ffd47858ee1ff674d5b2b68": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"351b929d9fd442328f0b9cf8af9c8f0f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"e0a2fdf5f7c8420abea56470a099cf96": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_80b3597ba1634c1bbc511f8beabef0bb",
|
||
"IPY_MODEL_86eb445c83fc4fdd8471ae3c1190d244",
|
||
"IPY_MODEL_5f55e430c0e8427b95e0e428074359b8"
|
||
],
|
||
"layout": "IPY_MODEL_d61162836a35450dbb43622b4d7603b1"
|
||
}
|
||
},
|
||
"80b3597ba1634c1bbc511f8beabef0bb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_8b109b26541042fdafef1ce9a0f36472",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_d3a13151ff334b778ad9dc3020b205cb",
|
||
"value": "README.md: "
|
||
}
|
||
},
|
||
"86eb445c83fc4fdd8471ae3c1190d244": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_3661e1e07bc1448c998c7fefd5270dab",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_b3b5b109dfec414aba0eecd379a47466",
|
||
"value": 1
|
||
}
|
||
},
|
||
"5f55e430c0e8427b95e0e428074359b8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_38be34645710407e94c18b1f6817ed43",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_8b054e76588144a6ab6c2633a65c5ee0",
|
||
"value": " 3.20k/? [00:00<00:00, 74.7kB/s]"
|
||
}
|
||
},
|
||
"d61162836a35450dbb43622b4d7603b1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"8b109b26541042fdafef1ce9a0f36472": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d3a13151ff334b778ad9dc3020b205cb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"3661e1e07bc1448c998c7fefd5270dab": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": "20px"
|
||
}
|
||
},
|
||
"b3b5b109dfec414aba0eecd379a47466": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"38be34645710407e94c18b1f6817ed43": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"8b054e76588144a6ab6c2633a65c5ee0": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"b2719a37c1da4e4baba835fb5906e4e8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_0d818aaeee424148a2316917e5c069da",
|
||
"IPY_MODEL_f54cb3dbfeac4313ad0464ff3fb96dac",
|
||
"IPY_MODEL_809986e2166947b38c5eed95a18efa8a"
|
||
],
|
||
"layout": "IPY_MODEL_55dd322d5c1f443fbdd5a45617a91116"
|
||
}
|
||
},
|
||
"0d818aaeee424148a2316917e5c069da": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_bf434f07b35844ca87f9f5c28d16e4a9",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_e730394b81db4c7ca5feeac4a525f344",
|
||
"value": "eval_results.json: 100%"
|
||
}
|
||
},
|
||
"f54cb3dbfeac4313ad0464ff3fb96dac": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_8519cf30feb440eda826f6beaf1646b2",
|
||
"max": 566,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_1605a710077b412c9a5176cd285d0ea6",
|
||
"value": 566
|
||
}
|
||
},
|
||
"809986e2166947b38c5eed95a18efa8a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_ad17f55244f34f4e9fc82aafab34b538",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_20dd6544bee74c019ec23272cac6e0ba",
|
||
"value": " 566/566 [00:00<00:00, 7.31kB/s]"
|
||
}
|
||
},
|
||
"55dd322d5c1f443fbdd5a45617a91116": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"bf434f07b35844ca87f9f5c28d16e4a9": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e730394b81db4c7ca5feeac4a525f344": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"8519cf30feb440eda826f6beaf1646b2": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1605a710077b412c9a5176cd285d0ea6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"ad17f55244f34f4e9fc82aafab34b538": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"20dd6544bee74c019ec23272cac6e0ba": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"6b770f28de264dc7bf61588443f4e865": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_6100ed8b785f4550934154598059a33c",
|
||
"IPY_MODEL_862f8584e1734baa860be6f77174bbc6",
|
||
"IPY_MODEL_f189ddb799c144bcaa85484a4fe270a9"
|
||
],
|
||
"layout": "IPY_MODEL_3a56d7bcae3646e99f0d5e44f7c62f6d"
|
||
}
|
||
},
|
||
"6100ed8b785f4550934154598059a33c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_7a6f706aaf2f4d63a43b26e592e31787",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_a103635d634c4aebb5fad37e83b16c6a",
|
||
"value": "config.json: 100%"
|
||
}
|
||
},
|
||
"862f8584e1734baa860be6f77174bbc6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_9588e29345ba46329262a01250007989",
|
||
"max": 608,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_2afd5aabc2734fee9c4291a96f6b94b4",
|
||
"value": 608
|
||
}
|
||
},
|
||
"f189ddb799c144bcaa85484a4fe270a9": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_cf5a5122e6464c0089d6d1f0bcd654e4",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_2ce6e39cf73b449db00e73587e8b960d",
|
||
"value": " 608/608 [00:00<00:00, 6.30kB/s]"
|
||
}
|
||
},
|
||
"3a56d7bcae3646e99f0d5e44f7c62f6d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"7a6f706aaf2f4d63a43b26e592e31787": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a103635d634c4aebb5fad37e83b16c6a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"9588e29345ba46329262a01250007989": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"2afd5aabc2734fee9c4291a96f6b94b4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"cf5a5122e6464c0089d6d1f0bcd654e4": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"2ce6e39cf73b449db00e73587e8b960d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"658981420ec74c32b9a5aa2fd12d65fb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_1680e40f7f634a4dbe26fc80d26d019f",
|
||
"IPY_MODEL_7352763c56e44cf6b01e6f35cbc45f6c",
|
||
"IPY_MODEL_1a74f2892d284c438dc9f8e979236c46"
|
||
],
|
||
"layout": "IPY_MODEL_f2620c076e7245e9bb64c047189cef8f"
|
||
}
|
||
},
|
||
"1680e40f7f634a4dbe26fc80d26d019f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e854978dea614a6184cfdbe908dbbb7d",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_62feb19f455347c9ba026157b1aa8c6c",
|
||
"value": "generation_config.json: 100%"
|
||
}
|
||
},
|
||
"7352763c56e44cf6b01e6f35cbc45f6c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_c045dbabf97248f2bc92fd511d0914ff",
|
||
"max": 124,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_a8a4df10db514857b24002267415cbb4",
|
||
"value": 124
|
||
}
|
||
},
|
||
"1a74f2892d284c438dc9f8e979236c46": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_48a041c2e9524059b5f36edc99ae77fc",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_53d706caff2f4b968d8ddaed3449475c",
|
||
"value": " 124/124 [00:00<00:00, 1.56kB/s]"
|
||
}
|
||
},
|
||
"f2620c076e7245e9bb64c047189cef8f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e854978dea614a6184cfdbe908dbbb7d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"62feb19f455347c9ba026157b1aa8c6c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"c045dbabf97248f2bc92fd511d0914ff": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a8a4df10db514857b24002267415cbb4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"48a041c2e9524059b5f36edc99ae77fc": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"53d706caff2f4b968d8ddaed3449475c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"d22fc1e159ac4ab1a9fa1562af765cc7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_ab31e4e465b445bc88ccda012e39c9e8",
|
||
"IPY_MODEL_69d7dd7f4f9b4bf29f4185ba49abe03a",
|
||
"IPY_MODEL_8982da26b3ab4a17801f13d90175a62d"
|
||
],
|
||
"layout": "IPY_MODEL_2919034923814f11a86b9b6ff6c2f3fa"
|
||
}
|
||
},
|
||
"ab31e4e465b445bc88ccda012e39c9e8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_0fe23be8273c448bb454b37342be6085",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_99ebf39523d34ee7976cf685d15f2ba7",
|
||
"value": "model.safetensors: 100%"
|
||
}
|
||
},
|
||
"69d7dd7f4f9b4bf29f4185ba49abe03a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_33f687ead6784ae7a2e15e7e0a0b1036",
|
||
"max": 2200119864,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_088a7da6b99c4c63b9a3fd15aa25ee0b",
|
||
"value": 2200119864
|
||
}
|
||
},
|
||
"8982da26b3ab4a17801f13d90175a62d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_8b9026ff40284939b49d8d287641df28",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_4b1c7a48d23b46179e9cef5130df6399",
|
||
"value": " 2.20G/2.20G [00:15<00:00, 183MB/s]"
|
||
}
|
||
},
|
||
"2919034923814f11a86b9b6ff6c2f3fa": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0fe23be8273c448bb454b37342be6085": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"99ebf39523d34ee7976cf685d15f2ba7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"33f687ead6784ae7a2e15e7e0a0b1036": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"088a7da6b99c4c63b9a3fd15aa25ee0b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"8b9026ff40284939b49d8d287641df28": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"4b1c7a48d23b46179e9cef5130df6399": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"2643002917114763920f0421fc83bc67": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_affa587d803f4476b39dafba6b465c11",
|
||
"IPY_MODEL_0fe75d35713f4e578bb22d57124e6b91",
|
||
"IPY_MODEL_cecf91c366e643058d61e6acca9512c1"
|
||
],
|
||
"layout": "IPY_MODEL_41125f5d4d0d48b080208754c0462524"
|
||
}
|
||
},
|
||
"affa587d803f4476b39dafba6b465c11": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b1937d82a61f4d4fa0431a3c558748ab",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_53ee84296103418dbbc5f3ea0a3d2ad4",
|
||
"value": "special_tokens_map.json: 100%"
|
||
}
|
||
},
|
||
"0fe75d35713f4e578bb22d57124e6b91": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_fd61b8725e3f41e1afe7e7e29d99c417",
|
||
"max": 551,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_0826103756d94005849f45cdbcb1d9fd",
|
||
"value": 551
|
||
}
|
||
},
|
||
"cecf91c366e643058d61e6acca9512c1": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_efd79e28736c4bd48c856e7646b303ac",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_0265104c4e7747fd9087792de45803c8",
|
||
"value": " 551/551 [00:00<00:00, 17.6kB/s]"
|
||
}
|
||
},
|
||
"41125f5d4d0d48b080208754c0462524": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b1937d82a61f4d4fa0431a3c558748ab": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"53ee84296103418dbbc5f3ea0a3d2ad4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"fd61b8725e3f41e1afe7e7e29d99c417": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0826103756d94005849f45cdbcb1d9fd": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"efd79e28736c4bd48c856e7646b303ac": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0265104c4e7747fd9087792de45803c8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"8c2867ee87534277931486bd4032f7e0": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_95076527f50d4d8fbcd02933393f476a",
|
||
"IPY_MODEL_0690ada1b0b44e1b8112de6813666fcf",
|
||
"IPY_MODEL_9e386007d0f3409fb650329f81f84d81"
|
||
],
|
||
"layout": "IPY_MODEL_575806acf4a94ff4b88546d90f486f32"
|
||
}
|
||
},
|
||
"95076527f50d4d8fbcd02933393f476a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_bb91269428644df1babd1ae39341ec33",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_a19b5850abca49348553d87cc9695d2b",
|
||
"value": "tokenizer.json: "
|
||
}
|
||
},
|
||
"0690ada1b0b44e1b8112de6813666fcf": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e9ecc447d5aa4a5f9341c94aecdeb403",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_26b2822ca8904593aa2a95d23068fcbb",
|
||
"value": 1
|
||
}
|
||
},
|
||
"9e386007d0f3409fb650329f81f84d81": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_5e2dd7e5d39f4645ad53cb92ee056c02",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_504cf356c80e40c69d80d6af2bda4d19",
|
||
"value": " 1.84M/? [00:00<00:00, 15.5MB/s]"
|
||
}
|
||
},
|
||
"575806acf4a94ff4b88546d90f486f32": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"bb91269428644df1babd1ae39341ec33": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a19b5850abca49348553d87cc9695d2b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"e9ecc447d5aa4a5f9341c94aecdeb403": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": "20px"
|
||
}
|
||
},
|
||
"26b2822ca8904593aa2a95d23068fcbb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"5e2dd7e5d39f4645ad53cb92ee056c02": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"504cf356c80e40c69d80d6af2bda4d19": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"de310b63d1c8418388992fe569036203": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_52c870a107ff45ccac57fedfe40d5135",
|
||
"IPY_MODEL_8155e6ea360e41f89e3f8432fc1a5314",
|
||
"IPY_MODEL_59c98ddd8a6e44ed88e6785bfcac8821"
|
||
],
|
||
"layout": "IPY_MODEL_8981e41b49bf4482b5903d3852ac0f02"
|
||
}
|
||
},
|
||
"52c870a107ff45ccac57fedfe40d5135": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e2c7a889c4704065a862f00c5b0f59d5",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_c2191171dd014e29816ff9da1c29003a",
|
||
"value": "tokenizer_config.json: "
|
||
}
|
||
},
|
||
"8155e6ea360e41f89e3f8432fc1a5314": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b38f03393e084cd8a60fccc37423e806",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_8493e8b0e2d2455cb98161191da9727f",
|
||
"value": 1
|
||
}
|
||
},
|
||
"59c98ddd8a6e44ed88e6785bfcac8821": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_6e42adf16d3343cba5d35cf25777598e",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_81a52af510494f10a6acb9f449f41e20",
|
||
"value": " 1.29k/? [00:00<00:00, 29.3kB/s]"
|
||
}
|
||
},
|
||
"8981e41b49bf4482b5903d3852ac0f02": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e2c7a889c4704065a862f00c5b0f59d5": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"c2191171dd014e29816ff9da1c29003a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"b38f03393e084cd8a60fccc37423e806": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": "20px"
|
||
}
|
||
},
|
||
"8493e8b0e2d2455cb98161191da9727f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"6e42adf16d3343cba5d35cf25777598e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"81a52af510494f10a6acb9f449f41e20": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"06866706b5e24918b71ead17a4d85beb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_492562169b04462f9d36375a5e4bb3fb",
|
||
"IPY_MODEL_2c4edd5214de459fb2d8862944adb7da",
|
||
"IPY_MODEL_0eebb5586f1e4b649bb375e79f5bec63"
|
||
],
|
||
"layout": "IPY_MODEL_87160fec94c049fc808034e6cbc652c1"
|
||
}
|
||
},
|
||
"492562169b04462f9d36375a5e4bb3fb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_246acc02a5e5491c910a48b868d2a295",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_0fc5be4037a94e92893120f1c5d30b17",
|
||
"value": "tokenizer.model: 100%"
|
||
}
|
||
},
|
||
"2c4edd5214de459fb2d8862944adb7da": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_35491086cd6248da9ce15da93519273a",
|
||
"max": 499723,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_af8c9143672c484da309f3e8c486a118",
|
||
"value": 499723
|
||
}
|
||
},
|
||
"0eebb5586f1e4b649bb375e79f5bec63": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_36b7aa8e2c7249278838c6190fd8af98",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_973354c51a6244a9812dcd3a62b4a55a",
|
||
"value": " 500k/500k [00:00<00:00, 3.44MB/s]"
|
||
}
|
||
},
|
||
"87160fec94c049fc808034e6cbc652c1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"246acc02a5e5491c910a48b868d2a295": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0fc5be4037a94e92893120f1c5d30b17": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"35491086cd6248da9ce15da93519273a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"af8c9143672c484da309f3e8c486a118": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"36b7aa8e2c7249278838c6190fd8af98": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"973354c51a6244a9812dcd3a62b4a55a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
}
|
||
}
|
||
}
|
||
},
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "w4eS0-nNc944",
|
||
"outputId": "fcd66806-3c37-4101-e77b-5d5c43061aab"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Cloning into 'SpQR'...\n",
|
||
"remote: Enumerating objects: 1511, done.\u001b[K\n",
|
||
"remote: Counting objects: 100% (298/298), done.\u001b[K\n",
|
||
"remote: Compressing objects: 100% (131/131), done.\u001b[K\n",
|
||
"remote: Total 1511 (delta 216), reused 167 (delta 167), pack-reused 1213 (from 2)\u001b[K\n",
|
||
"Receiving objects: 100% (1511/1511), 22.35 MiB | 11.05 MiB/s, done.\n",
|
||
"Resolving deltas: 100% (544/544), done.\n",
|
||
"/content/SpQR\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"!git clone https://github.com/Vahe1994/SpQR.git\n",
|
||
"%cd SpQR"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!pip install -r requirements.txt"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "gka6qcIfdZDi",
|
||
"outputId": "7f677c82-1674-4f55-da01-843ff1e99b8d"
|
||
},
|
||
"execution_count": 3,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Requirement already satisfied: safetensors in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 1)) (0.5.3)\n",
|
||
"Collecting datasets>=2.16.1 (from -r requirements.txt (line 2))\n",
|
||
" Downloading datasets-4.0.0-py3-none-any.whl.metadata (19 kB)\n",
|
||
"Collecting sentencepiece==0.1.97 (from -r requirements.txt (line 3))\n",
|
||
" Downloading sentencepiece-0.1.97.tar.gz (524 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m524.7/524.7 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
||
"Requirement already satisfied: transformers>=4.36 in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 4)) (4.53.2)\n",
|
||
"Requirement already satisfied: accelerate>=0.26.0 in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 5)) (1.9.0)\n",
|
||
"Requirement already satisfied: tokenizers>=0.14.1 in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 6)) (0.21.2)\n",
|
||
"Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 7)) (2.6.0+cu124)\n",
|
||
"Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (3.18.0)\n",
|
||
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (2.0.2)\n",
|
||
"Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (18.1.0)\n",
|
||
"Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (0.3.7)\n",
|
||
"Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (2.2.2)\n",
|
||
"Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (2.32.3)\n",
|
||
"Requirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (4.67.1)\n",
|
||
"Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (3.5.0)\n",
|
||
"Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (0.70.15)\n",
|
||
"Collecting fsspec<=2025.3.0,>=2023.1.0 (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2))\n",
|
||
" Downloading fsspec-2025.3.0-py3-none-any.whl.metadata (11 kB)\n",
|
||
"Requirement already satisfied: huggingface-hub>=0.24.0 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (0.33.4)\n",
|
||
"Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (25.0)\n",
|
||
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (6.0.2)\n",
|
||
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.36->-r requirements.txt (line 4)) (2024.11.6)\n",
|
||
"Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from accelerate>=0.26.0->-r requirements.txt (line 5)) (5.9.5)\n",
|
||
"Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (4.14.1)\n",
|
||
"Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (3.5)\n",
|
||
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (3.1.6)\n",
|
||
"Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
||
"Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
||
"Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
|
||
"Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
|
||
"Collecting nvidia-cublas-cu12==12.4.5.8 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
||
"Collecting nvidia-cufft-cu12==11.2.1.3 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
||
"Collecting nvidia-curand-cu12==10.3.5.147 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
||
"Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
|
||
"Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
|
||
"Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (0.6.2)\n",
|
||
"Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (2.21.5)\n",
|
||
"Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (12.4.127)\n",
|
||
"Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch>=2.4.0->-r requirements.txt (line 7))\n",
|
||
" Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
||
"Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (3.2.0)\n",
|
||
"Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (1.13.1)\n",
|
||
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=2.4.0->-r requirements.txt (line 7)) (1.3.0)\n",
|
||
"Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /usr/local/lib/python3.11/dist-packages (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (3.11.15)\n",
|
||
"Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.24.0->datasets>=2.16.1->-r requirements.txt (line 2)) (1.1.5)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.1->-r requirements.txt (line 2)) (3.4.2)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.1->-r requirements.txt (line 2)) (3.10)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.1->-r requirements.txt (line 2)) (2.5.0)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.1->-r requirements.txt (line 2)) (2025.7.14)\n",
|
||
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=2.4.0->-r requirements.txt (line 7)) (3.0.2)\n",
|
||
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.1->-r requirements.txt (line 2)) (2.9.0.post0)\n",
|
||
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.1->-r requirements.txt (line 2)) (2025.2)\n",
|
||
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.1->-r requirements.txt (line 2)) (2025.2)\n",
|
||
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (2.6.1)\n",
|
||
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (1.4.0)\n",
|
||
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (25.3.0)\n",
|
||
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (1.7.0)\n",
|
||
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (6.6.3)\n",
|
||
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (0.3.2)\n",
|
||
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (1.20.1)\n",
|
||
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.16.1->-r requirements.txt (line 2)) (1.17.0)\n",
|
||
"Downloading datasets-4.0.0-py3-none-any.whl (494 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m494.8/494.8 kB\u001b[0m \u001b[31m36.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m36.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m35.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m43.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m102.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading fsspec-2025.3.0-py3-none-any.whl (193 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m193.6/193.6 kB\u001b[0m \u001b[31m18.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hBuilding wheels for collected packages: sentencepiece\n",
|
||
" Building wheel for sentencepiece (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
||
" Created wheel for sentencepiece: filename=sentencepiece-0.1.97-cp311-cp311-linux_x86_64.whl size=1244400 sha256=1781e7c94c7f20ae3b1b23f40ad38c8cd67de9accc47d7413d76dc824f44c204\n",
|
||
" Stored in directory: /root/.cache/pip/wheels/04/dd/ab/6e3d4b6b17fe7ca0f54548ae20941c40bb3f15839d66f5598c\n",
|
||
"Successfully built sentencepiece\n",
|
||
"Installing collected packages: sentencepiece, nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, fsspec, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, datasets\n",
|
||
" Attempting uninstall: sentencepiece\n",
|
||
" Found existing installation: sentencepiece 0.2.0\n",
|
||
" Uninstalling sentencepiece-0.2.0:\n",
|
||
" Successfully uninstalled sentencepiece-0.2.0\n",
|
||
" Attempting uninstall: nvidia-nvjitlink-cu12\n",
|
||
" Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n",
|
||
" Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n",
|
||
" Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n",
|
||
" Attempting uninstall: nvidia-curand-cu12\n",
|
||
" Found existing installation: nvidia-curand-cu12 10.3.6.82\n",
|
||
" Uninstalling nvidia-curand-cu12-10.3.6.82:\n",
|
||
" Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n",
|
||
" Attempting uninstall: nvidia-cufft-cu12\n",
|
||
" Found existing installation: nvidia-cufft-cu12 11.2.3.61\n",
|
||
" Uninstalling nvidia-cufft-cu12-11.2.3.61:\n",
|
||
" Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n",
|
||
" Attempting uninstall: nvidia-cuda-runtime-cu12\n",
|
||
" Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n",
|
||
" Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n",
|
||
" Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n",
|
||
" Attempting uninstall: nvidia-cuda-nvrtc-cu12\n",
|
||
" Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n",
|
||
" Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n",
|
||
" Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n",
|
||
" Attempting uninstall: nvidia-cuda-cupti-cu12\n",
|
||
" Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n",
|
||
" Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n",
|
||
" Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n",
|
||
" Attempting uninstall: nvidia-cublas-cu12\n",
|
||
" Found existing installation: nvidia-cublas-cu12 12.5.3.2\n",
|
||
" Uninstalling nvidia-cublas-cu12-12.5.3.2:\n",
|
||
" Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n",
|
||
" Attempting uninstall: fsspec\n",
|
||
" Found existing installation: fsspec 2025.7.0\n",
|
||
" Uninstalling fsspec-2025.7.0:\n",
|
||
" Successfully uninstalled fsspec-2025.7.0\n",
|
||
" Attempting uninstall: nvidia-cusparse-cu12\n",
|
||
" Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n",
|
||
" Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n",
|
||
" Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n",
|
||
" Attempting uninstall: nvidia-cudnn-cu12\n",
|
||
" Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n",
|
||
" Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n",
|
||
" Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n",
|
||
" Attempting uninstall: nvidia-cusolver-cu12\n",
|
||
" Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n",
|
||
" Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n",
|
||
" Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n",
|
||
" Attempting uninstall: datasets\n",
|
||
" Found existing installation: datasets 2.14.4\n",
|
||
" Uninstalling datasets-2.14.4:\n",
|
||
" Successfully uninstalled datasets-2.14.4\n",
|
||
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
||
"gcsfs 2025.7.0 requires fsspec==2025.7.0, but you have fsspec 2025.3.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
||
"\u001b[0mSuccessfully installed datasets-4.0.0 fsspec-2025.3.0 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127 sentencepiece-0.1.97\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!pip install fsspec==2025.7.0"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "vuK9njwBdZBw",
|
||
"outputId": "e3041577-f9de-4832-fe2d-432ecb9bb032"
|
||
},
|
||
"execution_count": 4,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Collecting fsspec==2025.7.0\n",
|
||
" Downloading fsspec-2025.7.0-py3-none-any.whl.metadata (12 kB)\n",
|
||
"Downloading fsspec-2025.7.0-py3-none-any.whl (199 kB)\n",
|
||
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/199.6 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━\u001b[0m \u001b[32m194.6/199.6 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.6/199.6 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hInstalling collected packages: fsspec\n",
|
||
" Attempting uninstall: fsspec\n",
|
||
" Found existing installation: fsspec 2025.3.0\n",
|
||
" Uninstalling fsspec-2025.3.0:\n",
|
||
" Successfully uninstalled fsspec-2025.3.0\n",
|
||
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
||
"datasets 4.0.0 requires fsspec[http]<=2025.3.0,>=2023.1.0, but you have fsspec 2025.7.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
||
"\u001b[0mSuccessfully installed fsspec-2025.7.0\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!pip install datasets==2.16.1"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "Z24jgE_udY9X",
|
||
"outputId": "b587e0c6-27e0-437d-fd72-7c1fdd9e7fb8"
|
||
},
|
||
"execution_count": 5,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Collecting datasets==2.16.1\n",
|
||
" Downloading datasets-2.16.1-py3-none-any.whl.metadata (20 kB)\n",
|
||
"Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (3.18.0)\n",
|
||
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (2.0.2)\n",
|
||
"Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (18.1.0)\n",
|
||
"Collecting pyarrow-hotfix (from datasets==2.16.1)\n",
|
||
" Downloading pyarrow_hotfix-0.7-py3-none-any.whl.metadata (3.6 kB)\n",
|
||
"Requirement already satisfied: dill<0.3.8,>=0.3.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (0.3.7)\n",
|
||
"Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (2.2.2)\n",
|
||
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (2.32.3)\n",
|
||
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (4.67.1)\n",
|
||
"Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (3.5.0)\n",
|
||
"Requirement already satisfied: multiprocess in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (0.70.15)\n",
|
||
"Collecting fsspec<=2023.10.0,>=2023.1.0 (from fsspec[http]<=2023.10.0,>=2023.1.0->datasets==2.16.1)\n",
|
||
" Downloading fsspec-2023.10.0-py3-none-any.whl.metadata (6.8 kB)\n",
|
||
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (3.11.15)\n",
|
||
"Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (0.33.4)\n",
|
||
"Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (25.0)\n",
|
||
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (6.0.2)\n",
|
||
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (2.6.1)\n",
|
||
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (1.4.0)\n",
|
||
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (25.3.0)\n",
|
||
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (1.7.0)\n",
|
||
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (6.6.3)\n",
|
||
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (0.3.2)\n",
|
||
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (1.20.1)\n",
|
||
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.19.4->datasets==2.16.1) (4.14.1)\n",
|
||
"Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.19.4->datasets==2.16.1) (1.1.5)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.16.1) (3.4.2)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.16.1) (3.10)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.16.1) (2.5.0)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.16.1) (2025.7.14)\n",
|
||
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.16.1) (2.9.0.post0)\n",
|
||
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.16.1) (2025.2)\n",
|
||
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.16.1) (2025.2)\n",
|
||
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->datasets==2.16.1) (1.17.0)\n",
|
||
"Downloading datasets-2.16.1-py3-none-any.whl (507 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m507.1/507.1 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading fsspec-2023.10.0-py3-none-any.whl (166 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.4/166.4 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading pyarrow_hotfix-0.7-py3-none-any.whl (7.9 kB)\n",
|
||
"Installing collected packages: pyarrow-hotfix, fsspec, datasets\n",
|
||
" Attempting uninstall: fsspec\n",
|
||
" Found existing installation: fsspec 2025.7.0\n",
|
||
" Uninstalling fsspec-2025.7.0:\n",
|
||
" Successfully uninstalled fsspec-2025.7.0\n",
|
||
" Attempting uninstall: datasets\n",
|
||
" Found existing installation: datasets 4.0.0\n",
|
||
" Uninstalling datasets-4.0.0:\n",
|
||
" Successfully uninstalled datasets-4.0.0\n",
|
||
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
||
"gcsfs 2025.7.0 requires fsspec==2025.7.0, but you have fsspec 2023.10.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
||
"\u001b[0mSuccessfully installed datasets-2.16.1 fsspec-2023.10.0 pyarrow-hotfix-0.7\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!pip install datasets==2.19.1"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "ZlkUej9ddY7Q",
|
||
"outputId": "0a9ea72c-406d-4ed2-841d-51b6668b83c3"
|
||
},
|
||
"execution_count": 6,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Collecting datasets==2.19.1\n",
|
||
" Downloading datasets-2.19.1-py3-none-any.whl.metadata (19 kB)\n",
|
||
"Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (3.18.0)\n",
|
||
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (2.0.2)\n",
|
||
"Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (18.1.0)\n",
|
||
"Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (0.7)\n",
|
||
"Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (0.3.7)\n",
|
||
"Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (2.2.2)\n",
|
||
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (2.32.3)\n",
|
||
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (4.67.1)\n",
|
||
"Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (3.5.0)\n",
|
||
"Requirement already satisfied: multiprocess in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (0.70.15)\n",
|
||
"Requirement already satisfied: fsspec<=2024.3.1,>=2023.1.0 in /usr/local/lib/python3.11/dist-packages (from fsspec[http]<=2024.3.1,>=2023.1.0->datasets==2.19.1) (2023.10.0)\n",
|
||
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (3.11.15)\n",
|
||
"Requirement already satisfied: huggingface-hub>=0.21.2 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (0.33.4)\n",
|
||
"Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (25.0)\n",
|
||
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (6.0.2)\n",
|
||
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (2.6.1)\n",
|
||
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (1.4.0)\n",
|
||
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (25.3.0)\n",
|
||
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (1.7.0)\n",
|
||
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (6.6.3)\n",
|
||
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (0.3.2)\n",
|
||
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (1.20.1)\n",
|
||
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.21.2->datasets==2.19.1) (4.14.1)\n",
|
||
"Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.21.2->datasets==2.19.1) (1.1.5)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.19.1) (3.4.2)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.19.1) (3.10)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.19.1) (2.5.0)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.19.1) (2025.7.14)\n",
|
||
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.19.1) (2.9.0.post0)\n",
|
||
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.19.1) (2025.2)\n",
|
||
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.19.1) (2025.2)\n",
|
||
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->datasets==2.19.1) (1.17.0)\n",
|
||
"Downloading datasets-2.19.1-py3-none-any.whl (542 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m542.0/542.0 kB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hInstalling collected packages: datasets\n",
|
||
" Attempting uninstall: datasets\n",
|
||
" Found existing installation: datasets 2.16.1\n",
|
||
" Uninstalling datasets-2.16.1:\n",
|
||
" Successfully uninstalled datasets-2.16.1\n",
|
||
"Successfully installed datasets-2.19.1\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"import importlib\n",
|
||
"\n",
|
||
"def print_package_version(package_name: str):\n",
|
||
" try:\n",
|
||
" package = importlib.import_module(package_name)\n",
|
||
"\n",
|
||
" if hasattr(package, \"__version__\"):\n",
|
||
" print(f\"{package_name} version: {package.__version__}\")\n",
|
||
" else:\n",
|
||
" print(f\"Package '{package_name}' does not have a __version__ attribute.\")\n",
|
||
" except ModuleNotFoundError:\n",
|
||
" print(f\"Package '{package_name}' is not installed.\")\n",
|
||
" except Exception as e:\n",
|
||
" print(f\"Error while checking version of '{package_name}': {e}\")"
|
||
],
|
||
"metadata": {
|
||
"id": "HiqtOIeXdY41"
|
||
},
|
||
"execution_count": 7,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"print_package_version(\"datasets\")\n",
|
||
"print_package_version(\"sentencepiece\")\n",
|
||
"print_package_version(\"transformers\")\n",
|
||
"print_package_version(\"accelerate\")\n",
|
||
"print_package_version(\"tokenizers\")\n",
|
||
"print_package_version(\"safetensors\")\n",
|
||
"print_package_version(\"torch\")\n",
|
||
"print_package_version(\"gcsfs\")\n",
|
||
"print_package_version(\"fsspec\")"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "G8hUGiG-dY2g",
|
||
"outputId": "b977f4ec-df6c-4d91-8e4c-3d966b3b2683"
|
||
},
|
||
"execution_count": 8,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"datasets version: 2.19.1\n",
|
||
"sentencepiece version: 0.1.97\n",
|
||
"transformers version: 4.53.2\n",
|
||
"accelerate version: 1.9.0\n",
|
||
"tokenizers version: 0.21.2\n",
|
||
"safetensors version: 0.5.3\n",
|
||
"torch version: 2.6.0+cu124\n",
|
||
"gcsfs version: 2025.7.0\n",
|
||
"fsspec version: 2023.10.0\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!git lfs install"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "tVX9UHiddY0b",
|
||
"outputId": "19e318e3-3311-454e-f040-394831d34874"
|
||
},
|
||
"execution_count": 9,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Updated git hooks.\n",
|
||
"Git LFS initialized.\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!git clone https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "iAXZ1RMkdYyU",
|
||
"outputId": "86338ef9-2a2b-44a8-e551-9427deb5daa9"
|
||
},
|
||
"execution_count": 10,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Cloning into 'TinyLlama-1.1B-Chat-v1.0'...\n",
|
||
"remote: Enumerating objects: 60, done.\u001b[K\n",
|
||
"remote: Counting objects: 100% (57/57), done.\u001b[K\n",
|
||
"remote: Compressing objects: 100% (57/57), done.\u001b[K\n",
|
||
"remote: Total 60 (delta 21), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
||
"Unpacking objects: 100% (60/60), 519.98 KiB | 2.71 MiB/s, done.\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"import os\n",
|
||
"print(os.getcwd())"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "yQJ_Ay3WdYwB",
|
||
"outputId": "080ff8a9-112e-4738-990f-f97d0fea6081"
|
||
},
|
||
"execution_count": 11,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"/content/SpQR\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"print(os.getenv(\"HF_HOME\"))"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "uhSZozOVld89",
|
||
"outputId": "a4ce5c8a-5318-4010-8eb4-47297df11251"
|
||
},
|
||
"execution_count": 12,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"None\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"from huggingface_hub import snapshot_download\n",
|
||
"\n",
|
||
"model_repo = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\"\n",
|
||
"local_dir = snapshot_download(repo_id=model_repo)\n",
|
||
"print(f\"Model downloaded to: {local_dir}\")\n"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 514,
|
||
"referenced_widgets": [
|
||
"ef495d16dd1a4f23be512d86f4b2800b",
|
||
"a71f86b74b7f42d88266be2bc79a2c30",
|
||
"cb557d42a7d345c0934604036a93bc10",
|
||
"c95e9deefff24265bb7aaefcee32a044",
|
||
"7c4e99924b9449bc8a930002d8ba83fc",
|
||
"750d241ac10e4d06903aad102164d983",
|
||
"aa9cce0280794b9aae6074653ec61636",
|
||
"1946cfddd06743b588ae787a0cea42aa",
|
||
"c0625a79528f48dc8ee64459d2909b79",
|
||
"adb22899471442589285fd41312a503f",
|
||
"a6e55e6f062143e7823fc585a530fc56",
|
||
"c4f91f5988cf4e2abababec9e5904a73",
|
||
"686fe40fc8924f65843cd6029d719bc5",
|
||
"34de9719c9ee465493ae92912eff1989",
|
||
"a97203da20354f708de631b59fc42e0e",
|
||
"e4188c6d219141f7bd1e15dd05d1bb1a",
|
||
"1133635a5e6947de89b7ba00339d8fc5",
|
||
"b68f3994adc24215bbe0b07329a7a811",
|
||
"b4fa7ff09fc149309150fb56acf5cb92",
|
||
"6a0623311261475f989c6d8e3e17cb87",
|
||
"9fc84d5a4ffd47858ee1ff674d5b2b68",
|
||
"351b929d9fd442328f0b9cf8af9c8f0f",
|
||
"e0a2fdf5f7c8420abea56470a099cf96",
|
||
"80b3597ba1634c1bbc511f8beabef0bb",
|
||
"86eb445c83fc4fdd8471ae3c1190d244",
|
||
"5f55e430c0e8427b95e0e428074359b8",
|
||
"d61162836a35450dbb43622b4d7603b1",
|
||
"8b109b26541042fdafef1ce9a0f36472",
|
||
"d3a13151ff334b778ad9dc3020b205cb",
|
||
"3661e1e07bc1448c998c7fefd5270dab",
|
||
"b3b5b109dfec414aba0eecd379a47466",
|
||
"38be34645710407e94c18b1f6817ed43",
|
||
"8b054e76588144a6ab6c2633a65c5ee0",
|
||
"b2719a37c1da4e4baba835fb5906e4e8",
|
||
"0d818aaeee424148a2316917e5c069da",
|
||
"f54cb3dbfeac4313ad0464ff3fb96dac",
|
||
"809986e2166947b38c5eed95a18efa8a",
|
||
"55dd322d5c1f443fbdd5a45617a91116",
|
||
"bf434f07b35844ca87f9f5c28d16e4a9",
|
||
"e730394b81db4c7ca5feeac4a525f344",
|
||
"8519cf30feb440eda826f6beaf1646b2",
|
||
"1605a710077b412c9a5176cd285d0ea6",
|
||
"ad17f55244f34f4e9fc82aafab34b538",
|
||
"20dd6544bee74c019ec23272cac6e0ba",
|
||
"6b770f28de264dc7bf61588443f4e865",
|
||
"6100ed8b785f4550934154598059a33c",
|
||
"862f8584e1734baa860be6f77174bbc6",
|
||
"f189ddb799c144bcaa85484a4fe270a9",
|
||
"3a56d7bcae3646e99f0d5e44f7c62f6d",
|
||
"7a6f706aaf2f4d63a43b26e592e31787",
|
||
"a103635d634c4aebb5fad37e83b16c6a",
|
||
"9588e29345ba46329262a01250007989",
|
||
"2afd5aabc2734fee9c4291a96f6b94b4",
|
||
"cf5a5122e6464c0089d6d1f0bcd654e4",
|
||
"2ce6e39cf73b449db00e73587e8b960d",
|
||
"658981420ec74c32b9a5aa2fd12d65fb",
|
||
"1680e40f7f634a4dbe26fc80d26d019f",
|
||
"7352763c56e44cf6b01e6f35cbc45f6c",
|
||
"1a74f2892d284c438dc9f8e979236c46",
|
||
"f2620c076e7245e9bb64c047189cef8f",
|
||
"e854978dea614a6184cfdbe908dbbb7d",
|
||
"62feb19f455347c9ba026157b1aa8c6c",
|
||
"c045dbabf97248f2bc92fd511d0914ff",
|
||
"a8a4df10db514857b24002267415cbb4",
|
||
"48a041c2e9524059b5f36edc99ae77fc",
|
||
"53d706caff2f4b968d8ddaed3449475c",
|
||
"d22fc1e159ac4ab1a9fa1562af765cc7",
|
||
"ab31e4e465b445bc88ccda012e39c9e8",
|
||
"69d7dd7f4f9b4bf29f4185ba49abe03a",
|
||
"8982da26b3ab4a17801f13d90175a62d",
|
||
"2919034923814f11a86b9b6ff6c2f3fa",
|
||
"0fe23be8273c448bb454b37342be6085",
|
||
"99ebf39523d34ee7976cf685d15f2ba7",
|
||
"33f687ead6784ae7a2e15e7e0a0b1036",
|
||
"088a7da6b99c4c63b9a3fd15aa25ee0b",
|
||
"8b9026ff40284939b49d8d287641df28",
|
||
"4b1c7a48d23b46179e9cef5130df6399",
|
||
"2643002917114763920f0421fc83bc67",
|
||
"affa587d803f4476b39dafba6b465c11",
|
||
"0fe75d35713f4e578bb22d57124e6b91",
|
||
"cecf91c366e643058d61e6acca9512c1",
|
||
"41125f5d4d0d48b080208754c0462524",
|
||
"b1937d82a61f4d4fa0431a3c558748ab",
|
||
"53ee84296103418dbbc5f3ea0a3d2ad4",
|
||
"fd61b8725e3f41e1afe7e7e29d99c417",
|
||
"0826103756d94005849f45cdbcb1d9fd",
|
||
"efd79e28736c4bd48c856e7646b303ac",
|
||
"0265104c4e7747fd9087792de45803c8",
|
||
"8c2867ee87534277931486bd4032f7e0",
|
||
"95076527f50d4d8fbcd02933393f476a",
|
||
"0690ada1b0b44e1b8112de6813666fcf",
|
||
"9e386007d0f3409fb650329f81f84d81",
|
||
"575806acf4a94ff4b88546d90f486f32",
|
||
"bb91269428644df1babd1ae39341ec33",
|
||
"a19b5850abca49348553d87cc9695d2b",
|
||
"e9ecc447d5aa4a5f9341c94aecdeb403",
|
||
"26b2822ca8904593aa2a95d23068fcbb",
|
||
"5e2dd7e5d39f4645ad53cb92ee056c02",
|
||
"504cf356c80e40c69d80d6af2bda4d19",
|
||
"de310b63d1c8418388992fe569036203",
|
||
"52c870a107ff45ccac57fedfe40d5135",
|
||
"8155e6ea360e41f89e3f8432fc1a5314",
|
||
"59c98ddd8a6e44ed88e6785bfcac8821",
|
||
"8981e41b49bf4482b5903d3852ac0f02",
|
||
"e2c7a889c4704065a862f00c5b0f59d5",
|
||
"c2191171dd014e29816ff9da1c29003a",
|
||
"b38f03393e084cd8a60fccc37423e806",
|
||
"8493e8b0e2d2455cb98161191da9727f",
|
||
"6e42adf16d3343cba5d35cf25777598e",
|
||
"81a52af510494f10a6acb9f449f41e20",
|
||
"06866706b5e24918b71ead17a4d85beb",
|
||
"492562169b04462f9d36375a5e4bb3fb",
|
||
"2c4edd5214de459fb2d8862944adb7da",
|
||
"0eebb5586f1e4b649bb375e79f5bec63",
|
||
"87160fec94c049fc808034e6cbc652c1",
|
||
"246acc02a5e5491c910a48b868d2a295",
|
||
"0fc5be4037a94e92893120f1c5d30b17",
|
||
"35491086cd6248da9ce15da93519273a",
|
||
"af8c9143672c484da309f3e8c486a118",
|
||
"36b7aa8e2c7249278838c6190fd8af98",
|
||
"973354c51a6244a9812dcd3a62b4a55a"
|
||
]
|
||
},
|
||
"id": "Hd5hXTCrqvmA",
|
||
"outputId": "8c324d7d-ec1d-46d3-ade8-e9b3f11e632c"
|
||
},
|
||
"execution_count": 13,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stderr",
|
||
"text": [
|
||
"/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n",
|
||
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
|
||
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
|
||
"You will be able to reuse this secret in all of your notebooks.\n",
|
||
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
|
||
" warnings.warn(\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"Fetching 10 files: 0%| | 0/10 [00:00<?, ?it/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "ef495d16dd1a4f23be512d86f4b2800b"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
".gitattributes: 0.00B [00:00, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "c4f91f5988cf4e2abababec9e5904a73"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"README.md: 0.00B [00:00, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "e0a2fdf5f7c8420abea56470a099cf96"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"eval_results.json: 0%| | 0.00/566 [00:00<?, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "b2719a37c1da4e4baba835fb5906e4e8"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"config.json: 0%| | 0.00/608 [00:00<?, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "6b770f28de264dc7bf61588443f4e865"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"generation_config.json: 0%| | 0.00/124 [00:00<?, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "658981420ec74c32b9a5aa2fd12d65fb"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"model.safetensors: 0%| | 0.00/2.20G [00:00<?, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "d22fc1e159ac4ab1a9fa1562af765cc7"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"special_tokens_map.json: 0%| | 0.00/551 [00:00<?, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "2643002917114763920f0421fc83bc67"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"tokenizer.json: 0.00B [00:00, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "8c2867ee87534277931486bd4032f7e0"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"tokenizer_config.json: 0.00B [00:00, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "de310b63d1c8418388992fe569036203"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "06866706b5e24918b71ead17a4d85beb"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Model downloaded to: /root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
||
"\n",
|
||
"model_name_or_path = local_dir\n",
|
||
"\n",
|
||
"model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=\"auto\")\n"
|
||
],
|
||
"metadata": {
|
||
"id": "qirbUKnSqvhA"
|
||
},
|
||
"execution_count": 14,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"print(model)"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "ZkjCgSe7qveq",
|
||
"outputId": "d472b7a7-224a-424d-dcb6-205bd8dfd08f"
|
||
},
|
||
"execution_count": 15,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"LlamaForCausalLM(\n",
|
||
" (model): LlamaModel(\n",
|
||
" (embed_tokens): Embedding(32000, 2048)\n",
|
||
" (layers): ModuleList(\n",
|
||
" (0-21): 22 x LlamaDecoderLayer(\n",
|
||
" (self_attn): LlamaAttention(\n",
|
||
" (q_proj): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
||
" (k_proj): Linear(in_features=2048, out_features=256, bias=False)\n",
|
||
" (v_proj): Linear(in_features=2048, out_features=256, bias=False)\n",
|
||
" (o_proj): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
||
" )\n",
|
||
" (mlp): LlamaMLP(\n",
|
||
" (gate_proj): Linear(in_features=2048, out_features=5632, bias=False)\n",
|
||
" (up_proj): Linear(in_features=2048, out_features=5632, bias=False)\n",
|
||
" (down_proj): Linear(in_features=5632, out_features=2048, bias=False)\n",
|
||
" (act_fn): SiLU()\n",
|
||
" )\n",
|
||
" (input_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" (post_attention_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (norm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
||
" )\n",
|
||
" (lm_head): Linear(in_features=2048, out_features=32000, bias=False)\n",
|
||
")\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [],
|
||
"metadata": {
|
||
"id": "4YjPrasZuRBL"
|
||
},
|
||
"execution_count": 15,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!export MODEL_PATH=\"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\"\n",
|
||
"!export DATASET=\"pajama\""
|
||
],
|
||
"metadata": {
|
||
"id": "o9HD_H_gqvb1"
|
||
},
|
||
"execution_count": 16,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n",
|
||
" \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n",
|
||
" --outlier_threshold=0.2 --nsamples 128"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "EM_Aiwdzldyf",
|
||
"outputId": "a407c2ac-5e17-41b2-ac2d-a75763a0c08f"
|
||
},
|
||
"execution_count": 17,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"============ Loading model... ============\n",
|
||
"Loading pretrained model ...\n",
|
||
"2025-07-24 16:42:58.320416: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
||
"E0000 00:00:1753375378.341488 4048 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||
"E0000 00:00:1753375378.350092 4048 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||
"Model loaded sucessfully ...\n",
|
||
"\n",
|
||
"============ Quantizing model... ============\n",
|
||
"Loading data ...\n",
|
||
"Loaded data from pajama; len(data)=128\n",
|
||
"\n",
|
||
"Starting SPQR quantization ...\n",
|
||
"catching inputs from data\n",
|
||
"\n",
|
||
"---------------- Layer 0 of 22 ----------------\n",
|
||
"layer_dev_original=device(type='cpu')\n",
|
||
"Traceback (most recent call last):\n",
|
||
" File \"/content/SpQR/main.py\", line 582, in <module>\n",
|
||
" quantize_model(model, args, device)\n",
|
||
" File \"/content/SpQR/main.py\", line 89, in quantize_model\n",
|
||
" results = quantize_spqr(model, dataloader, args, device)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py\", line 116, in decorate_context\n",
|
||
" return func(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/content/SpQR/main.py\", line 230, in quantize_spqr\n",
|
||
" outs[j] = layer(inps[j].to(layer_dev).unsqueeze(0), **forward_args)[0]\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_layers.py\", line 83, in __call__\n",
|
||
" return super().__call__(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1739, in _wrapped_call_impl\n",
|
||
" return self._call_impl(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1750, in _call_impl\n",
|
||
" return forward_call(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/models/llama/modeling_llama.py\", line 290, in forward\n",
|
||
" hidden_states, self_attn_weights = self.self_attn(\n",
|
||
" ^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1739, in _wrapped_call_impl\n",
|
||
" return self._call_impl(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1750, in _call_impl\n",
|
||
" return forward_call(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/models/llama/modeling_llama.py\", line 235, in forward\n",
|
||
" cos, sin = position_embeddings\n",
|
||
" ^^^^^^^^\n",
|
||
"TypeError: cannot unpack non-iterable NoneType object\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"print(model.dtype)"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "rdZmVaVUldt_",
|
||
"outputId": "e19fb060-4d46-4177-caf4-d6c3f0c12129"
|
||
},
|
||
"execution_count": 18,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"torch.bfloat16\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"print(model.parameters)"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "0zbn6B4GldqQ",
|
||
"outputId": "00f8a712-17c5-4b51-ec11-9fec18a89ddf"
|
||
},
|
||
"execution_count": 19,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"<bound method Module.parameters of LlamaForCausalLM(\n",
|
||
" (model): LlamaModel(\n",
|
||
" (embed_tokens): Embedding(32000, 2048)\n",
|
||
" (layers): ModuleList(\n",
|
||
" (0-21): 22 x LlamaDecoderLayer(\n",
|
||
" (self_attn): LlamaAttention(\n",
|
||
" (q_proj): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
||
" (k_proj): Linear(in_features=2048, out_features=256, bias=False)\n",
|
||
" (v_proj): Linear(in_features=2048, out_features=256, bias=False)\n",
|
||
" (o_proj): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
||
" )\n",
|
||
" (mlp): LlamaMLP(\n",
|
||
" (gate_proj): Linear(in_features=2048, out_features=5632, bias=False)\n",
|
||
" (up_proj): Linear(in_features=2048, out_features=5632, bias=False)\n",
|
||
" (down_proj): Linear(in_features=5632, out_features=2048, bias=False)\n",
|
||
" (act_fn): SiLU()\n",
|
||
" )\n",
|
||
" (input_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" (post_attention_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (norm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
||
" )\n",
|
||
" (lm_head): Linear(in_features=2048, out_features=32000, bias=False)\n",
|
||
")>\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"print(model.forward)"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "SOTz41u8ldlp",
|
||
"outputId": "75a24675-93c8-42b2-a885-8932e45f4f0a"
|
||
},
|
||
"execution_count": 20,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"<bound method LlamaForCausalLM.forward of LlamaForCausalLM(\n",
|
||
" (model): LlamaModel(\n",
|
||
" (embed_tokens): Embedding(32000, 2048)\n",
|
||
" (layers): ModuleList(\n",
|
||
" (0-21): 22 x LlamaDecoderLayer(\n",
|
||
" (self_attn): LlamaAttention(\n",
|
||
" (q_proj): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
||
" (k_proj): Linear(in_features=2048, out_features=256, bias=False)\n",
|
||
" (v_proj): Linear(in_features=2048, out_features=256, bias=False)\n",
|
||
" (o_proj): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
||
" )\n",
|
||
" (mlp): LlamaMLP(\n",
|
||
" (gate_proj): Linear(in_features=2048, out_features=5632, bias=False)\n",
|
||
" (up_proj): Linear(in_features=2048, out_features=5632, bias=False)\n",
|
||
" (down_proj): Linear(in_features=5632, out_features=2048, bias=False)\n",
|
||
" (act_fn): SiLU()\n",
|
||
" )\n",
|
||
" (input_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" (post_attention_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (norm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
||
" )\n",
|
||
" (lm_head): Linear(in_features=2048, out_features=32000, bias=False)\n",
|
||
")>\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"source": [
|
||
"To resolve the error, AI suggested to build a Wrapper class that intercepts the call. We tried it out but in the end, the same mistake arised."
|
||
],
|
||
"metadata": {
|
||
"id": "gGJt1tAEF3xu"
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"import torch\n",
|
||
"\n",
|
||
"class RotaryWrapper(torch.nn.Module):\n",
|
||
" def __init__(self, model):\n",
|
||
" super().__init__()\n",
|
||
" self.model = model\n",
|
||
"\n",
|
||
" def forward(self, *args, **kwargs):\n",
|
||
" # Inject rotary embeddings before forward\n",
|
||
" if \"position_embeddings\" not in kwargs or kwargs[\"position_embeddings\"] is None:\n",
|
||
" seq_len = kwargs[\"input_ids\"].shape[1]\n",
|
||
" kwargs[\"position_embeddings\"] = self.model.model.rotary_emb(seq_len)\n",
|
||
" return self.model(*args, **kwargs)\n"
|
||
],
|
||
"metadata": {
|
||
"id": "r9kpGVRYldgx"
|
||
},
|
||
"execution_count": 21,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"model = RotaryWrapper(model)"
|
||
],
|
||
"metadata": {
|
||
"id": "j_dlynFildcg"
|
||
},
|
||
"execution_count": 22,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n",
|
||
" \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n",
|
||
" --outlier_threshold=0.2 --nsamples 128"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "ddNqS2WXldaQ",
|
||
"outputId": "cdae9172-0774-45cb-8ebf-6dd553b9353f"
|
||
},
|
||
"execution_count": 23,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"============ Loading model... ============\n",
|
||
"Loading pretrained model ...\n",
|
||
"2025-07-24 16:43:21.156604: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
||
"E0000 00:00:1753375401.189309 4136 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||
"E0000 00:00:1753375401.195550 4136 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||
"Model loaded sucessfully ...\n",
|
||
"\n",
|
||
"============ Quantizing model... ============\n",
|
||
"Loading data ...\n",
|
||
"Loaded data from pajama; len(data)=128\n",
|
||
"\n",
|
||
"Starting SPQR quantization ...\n",
|
||
"catching inputs from data\n",
|
||
"\n",
|
||
"---------------- Layer 0 of 22 ----------------\n",
|
||
"layer_dev_original=device(type='cpu')\n",
|
||
"Traceback (most recent call last):\n",
|
||
" File \"/content/SpQR/main.py\", line 582, in <module>\n",
|
||
" quantize_model(model, args, device)\n",
|
||
" File \"/content/SpQR/main.py\", line 89, in quantize_model\n",
|
||
" results = quantize_spqr(model, dataloader, args, device)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py\", line 116, in decorate_context\n",
|
||
" return func(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/content/SpQR/main.py\", line 230, in quantize_spqr\n",
|
||
" outs[j] = layer(inps[j].to(layer_dev).unsqueeze(0), **forward_args)[0]\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_layers.py\", line 83, in __call__\n",
|
||
" return super().__call__(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1739, in _wrapped_call_impl\n",
|
||
" return self._call_impl(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1750, in _call_impl\n",
|
||
" return forward_call(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/models/llama/modeling_llama.py\", line 290, in forward\n",
|
||
" hidden_states, self_attn_weights = self.self_attn(\n",
|
||
" ^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1739, in _wrapped_call_impl\n",
|
||
" return self._call_impl(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1750, in _call_impl\n",
|
||
" return forward_call(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/models/llama/modeling_llama.py\", line 235, in forward\n",
|
||
" cos, sin = position_embeddings\n",
|
||
" ^^^^^^^^\n",
|
||
"TypeError: cannot unpack non-iterable NoneType object\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"source": [
|
||
"The problem are the rotary embeddings."
|
||
],
|
||
"metadata": {
|
||
"id": "ZA_NQyaWIq-w"
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"model.eval()"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "b4VDusobIqzS",
|
||
"outputId": "8940425b-a42b-4d52-be77-4fb2fab9dd99"
|
||
},
|
||
"execution_count": 24,
|
||
"outputs": [
|
||
{
|
||
"output_type": "execute_result",
|
||
"data": {
|
||
"text/plain": [
|
||
"RotaryWrapper(\n",
|
||
" (model): LlamaForCausalLM(\n",
|
||
" (model): LlamaModel(\n",
|
||
" (embed_tokens): Embedding(32000, 2048)\n",
|
||
" (layers): ModuleList(\n",
|
||
" (0-21): 22 x LlamaDecoderLayer(\n",
|
||
" (self_attn): LlamaAttention(\n",
|
||
" (q_proj): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
||
" (k_proj): Linear(in_features=2048, out_features=256, bias=False)\n",
|
||
" (v_proj): Linear(in_features=2048, out_features=256, bias=False)\n",
|
||
" (o_proj): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
||
" )\n",
|
||
" (mlp): LlamaMLP(\n",
|
||
" (gate_proj): Linear(in_features=2048, out_features=5632, bias=False)\n",
|
||
" (up_proj): Linear(in_features=2048, out_features=5632, bias=False)\n",
|
||
" (down_proj): Linear(in_features=5632, out_features=2048, bias=False)\n",
|
||
" (act_fn): SiLU()\n",
|
||
" )\n",
|
||
" (input_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" (post_attention_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (norm): LlamaRMSNorm((2048,), eps=1e-05)\n",
|
||
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
||
" )\n",
|
||
" (lm_head): Linear(in_features=2048, out_features=32000, bias=False)\n",
|
||
" )\n",
|
||
")"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"execution_count": 24
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"source": [
|
||
"Since the internet does not really help (nothing related to this specific error), we used AI to help resolve this issue.\n",
|
||
"\n",
|
||
"The first suggestion is to inspect config.json and look for embedding keyword or something similar. In particular, MS Copilot suggested to look for:\n",
|
||
"- keyword rope_scaling which is set to linear and a factor, for example 1.0\n",
|
||
"- or use_rotary_embeddings: true\n",
|
||
"\n",
|
||
"Navigating and displaying the content of config.json we see the following output:\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"```\n",
|
||
"# Als Code formatiert\n",
|
||
"{\n",
|
||
" \"architectures\": [\n",
|
||
" \"LlamaForCausalLM\"\n",
|
||
" ],\n",
|
||
" \"attention_bias\": false,\n",
|
||
" \"bos_token_id\": 1,\n",
|
||
" \"eos_token_id\": 2,\n",
|
||
" \"hidden_act\": \"silu\",\n",
|
||
" \"hidden_size\": 2048,\n",
|
||
" \"initializer_range\": 0.02,\n",
|
||
" \"intermediate_size\": 5632,\n",
|
||
" \"max_position_embeddings\": 2048,\n",
|
||
" \"model_type\": \"llama\",\n",
|
||
" \"num_attention_heads\": 32,\n",
|
||
" \"num_hidden_layers\": 22,\n",
|
||
" \"num_key_value_heads\": 4,\n",
|
||
" \"pretraining_tp\": 1,\n",
|
||
" \"rms_norm_eps\": 1e-05,\n",
|
||
" \"rope_scaling\": null,\n",
|
||
" \"rope_theta\": 10000.0,\n",
|
||
" \"tie_word_embeddings\": false,\n",
|
||
" \"torch_dtype\": \"bfloat16\",\n",
|
||
" \"transformers_version\": \"4.35.0\",\n",
|
||
" \"use_cache\": true,\n",
|
||
" \"vocab_size\": 32000\n",
|
||
"}\n",
|
||
"```\n",
|
||
"\n",
|
||
"We see that we have the key rope_scaling, however, it is set to null. Seems to be disabled in TinyLlama by default.\n",
|
||
"\n",
|
||
"I have found a config.json file from another ([ HF repo](https://huggingface.co/elvircrn/Llama-2-7b-SPQR-3Bit-16x16-red_pajama-hf/blob/main/config.json) that specifies more json keys. The idea is to add those keys in my TinyLlama config.json with the hope that this somehow works. In partiluar, the referenced config.json adds \"quantization_config\" key. We will try this.\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n"
|
||
],
|
||
"metadata": {
|
||
"id": "-HoaOqk2L2wr"
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"\n",
|
||
"json_file = \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6/config.json\"\n",
|
||
"\n",
|
||
"with open(json_file) as json_file:\n",
|
||
" file_contents = json_file.read()\n",
|
||
"\n",
|
||
"print(file_contents)"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "kQ2dvNWUL2nA",
|
||
"outputId": "c96a4106-7e51-43f6-fa5d-91b899b1bf7f"
|
||
},
|
||
"execution_count": 25,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"{\n",
|
||
" \"architectures\": [\n",
|
||
" \"LlamaForCausalLM\"\n",
|
||
" ],\n",
|
||
" \"attention_bias\": false,\n",
|
||
" \"bos_token_id\": 1,\n",
|
||
" \"eos_token_id\": 2,\n",
|
||
" \"hidden_act\": \"silu\",\n",
|
||
" \"hidden_size\": 2048,\n",
|
||
" \"initializer_range\": 0.02,\n",
|
||
" \"intermediate_size\": 5632,\n",
|
||
" \"max_position_embeddings\": 2048,\n",
|
||
" \"model_type\": \"llama\",\n",
|
||
" \"num_attention_heads\": 32,\n",
|
||
" \"num_hidden_layers\": 22,\n",
|
||
" \"num_key_value_heads\": 4,\n",
|
||
" \"pretraining_tp\": 1,\n",
|
||
" \"rms_norm_eps\": 1e-05,\n",
|
||
" \"rope_scaling\": null,\n",
|
||
" \"rope_theta\": 10000.0,\n",
|
||
" \"tie_word_embeddings\": false,\n",
|
||
" \"torch_dtype\": \"bfloat16\",\n",
|
||
" \"transformers_version\": \"4.35.0\",\n",
|
||
" \"use_cache\": true,\n",
|
||
" \"vocab_size\": 32000\n",
|
||
"}\n",
|
||
"\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"import json\n",
|
||
"\n",
|
||
"json_file_path = \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6/config.json\"\n",
|
||
"\n",
|
||
"with open(json_file_path, \"r\") as json_file:\n",
|
||
" data = json.load(json_file)\n",
|
||
"\n",
|
||
"data[\"quantization_config\"] = {\n",
|
||
" \"quant_method\": \"spqr\",\n",
|
||
" \"beta1\": 16,\n",
|
||
" \"beta2\": 16,\n",
|
||
" \"bits\": 3\n",
|
||
"}\n",
|
||
"\n",
|
||
"with open(json_file_path, \"w\") as json_file:\n",
|
||
" json.dump(data, json_file, indent=2)\n",
|
||
"\n",
|
||
"with open(json_file_path) as json_file:\n",
|
||
" file_contents = json_file.read()\n",
|
||
"\n",
|
||
"print(file_contents)"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "fMSxUrt0IqmI",
|
||
"outputId": "5e830df0-9a62-49d5-bef8-bc17f19554f1"
|
||
},
|
||
"execution_count": 26,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"{\n",
|
||
" \"architectures\": [\n",
|
||
" \"LlamaForCausalLM\"\n",
|
||
" ],\n",
|
||
" \"attention_bias\": false,\n",
|
||
" \"bos_token_id\": 1,\n",
|
||
" \"eos_token_id\": 2,\n",
|
||
" \"hidden_act\": \"silu\",\n",
|
||
" \"hidden_size\": 2048,\n",
|
||
" \"initializer_range\": 0.02,\n",
|
||
" \"intermediate_size\": 5632,\n",
|
||
" \"max_position_embeddings\": 2048,\n",
|
||
" \"model_type\": \"llama\",\n",
|
||
" \"num_attention_heads\": 32,\n",
|
||
" \"num_hidden_layers\": 22,\n",
|
||
" \"num_key_value_heads\": 4,\n",
|
||
" \"pretraining_tp\": 1,\n",
|
||
" \"rms_norm_eps\": 1e-05,\n",
|
||
" \"rope_scaling\": null,\n",
|
||
" \"rope_theta\": 10000.0,\n",
|
||
" \"tie_word_embeddings\": false,\n",
|
||
" \"torch_dtype\": \"bfloat16\",\n",
|
||
" \"transformers_version\": \"4.35.0\",\n",
|
||
" \"use_cache\": true,\n",
|
||
" \"vocab_size\": 32000,\n",
|
||
" \"quantization_config\": {\n",
|
||
" \"quant_method\": \"spqr\",\n",
|
||
" \"beta1\": 16,\n",
|
||
" \"beta2\": 16,\n",
|
||
" \"bits\": 3\n",
|
||
" }\n",
|
||
"}\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n",
|
||
" \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n",
|
||
" --outlier_threshold=0.2 --nsamples 128"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "QMug2uyEldX6",
|
||
"outputId": "f17048ad-7903-4ddb-9d58-21dfd55075b1"
|
||
},
|
||
"execution_count": 27,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"============ Loading model... ============\n",
|
||
"Loading pretrained model ...\n",
|
||
"2025-07-24 16:43:34.667534: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
||
"E0000 00:00:1753375414.688225 4234 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||
"E0000 00:00:1753375414.694807 4234 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||
"Traceback (most recent call last):\n",
|
||
" File \"/content/SpQR/main.py\", line 577, in <module>\n",
|
||
" model = get_model(args.model_path, args.load, args.dtype).train(False)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/content/SpQR/modelutils.py\", line 45, in get_model\n",
|
||
" model = AutoModelForCausalLM.from_pretrained(\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/models/auto/auto_factory.py\", line 600, in from_pretrained\n",
|
||
" return model_class.from_pretrained(\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 311, in _wrapper\n",
|
||
" return func(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 4648, in from_pretrained\n",
|
||
" hf_quantizer.validate_environment(\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/quantizers/quantizer_spqr.py\", line 52, in validate_environment\n",
|
||
" raise ImportError(\"Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`\")\n",
|
||
"ImportError: Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!pip install spqr_quant[gpu]"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "XTEI-bEzldTM",
|
||
"outputId": "46f18a7d-711e-42b5-b93d-ae2e0f445ec2"
|
||
},
|
||
"execution_count": 29,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Collecting spqr_quant[gpu]\n",
|
||
" Downloading spqr_quant-0.2.0-py3-none-any.whl.metadata (6.4 kB)\n",
|
||
"Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (2.6.0+cu124)\n",
|
||
"Requirement already satisfied: transformers>=4.44.0 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (4.53.2)\n",
|
||
"Requirement already satisfied: safetensors>=0.4.5 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (0.5.3)\n",
|
||
"Collecting ninja (from spqr_quant[gpu])\n",
|
||
" Downloading ninja-1.11.1.4-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata (5.0 kB)\n",
|
||
"Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.18.0)\n",
|
||
"Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (4.14.1)\n",
|
||
"Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.5)\n",
|
||
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.1.6)\n",
|
||
"Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (2023.10.0)\n",
|
||
"Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: nvidia-cuda-runtime-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: nvidia-cuda-cupti-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (9.1.0.70)\n",
|
||
"Requirement already satisfied: nvidia-cublas-cu12==12.4.5.8 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.5.8)\n",
|
||
"Requirement already satisfied: nvidia-cufft-cu12==11.2.1.3 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (11.2.1.3)\n",
|
||
"Requirement already satisfied: nvidia-curand-cu12==10.3.5.147 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (10.3.5.147)\n",
|
||
"Requirement already satisfied: nvidia-cusolver-cu12==11.6.1.9 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (11.6.1.9)\n",
|
||
"Requirement already satisfied: nvidia-cusparse-cu12==12.3.1.170 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.3.1.170)\n",
|
||
"Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (0.6.2)\n",
|
||
"Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (2.21.5)\n",
|
||
"Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: nvidia-nvjitlink-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.2.0)\n",
|
||
"Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (1.13.1)\n",
|
||
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=2.4.0->spqr_quant[gpu]) (1.3.0)\n",
|
||
"Requirement already satisfied: huggingface-hub<1.0,>=0.30.0 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (0.33.4)\n",
|
||
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2.0.2)\n",
|
||
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (25.0)\n",
|
||
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (6.0.2)\n",
|
||
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2024.11.6)\n",
|
||
"Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2.32.3)\n",
|
||
"Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (0.21.2)\n",
|
||
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (4.67.1)\n",
|
||
"Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.30.0->transformers>=4.44.0->spqr_quant[gpu]) (1.1.5)\n",
|
||
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=2.4.0->spqr_quant[gpu]) (3.0.2)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (3.4.2)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (3.10)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (2.5.0)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (2025.7.14)\n",
|
||
"Downloading ninja-1.11.1.4-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (422 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m422.8/422.8 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hDownloading spqr_quant-0.2.0-py3-none-any.whl (20 kB)\n",
|
||
"Installing collected packages: ninja, spqr_quant\n",
|
||
"Successfully installed ninja-1.11.1.4 spqr_quant-0.2.0\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n",
|
||
" \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n",
|
||
" --outlier_threshold=0.2 --nsamples 128"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "b8heHWLJUm13",
|
||
"outputId": "2c5175c7-a15e-471a-94aa-da1d3fe0dda9"
|
||
},
|
||
"execution_count": 30,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"============ Loading model... ============\n",
|
||
"Loading pretrained model ...\n",
|
||
"2025-07-24 16:44:47.113163: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
||
"E0000 00:00:1753375487.147590 4557 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||
"E0000 00:00:1753375487.158582 4557 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||
"Traceback (most recent call last):\n",
|
||
" File \"/content/SpQR/main.py\", line 577, in <module>\n",
|
||
" model = get_model(args.model_path, args.load, args.dtype).train(False)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/content/SpQR/modelutils.py\", line 45, in get_model\n",
|
||
" model = AutoModelForCausalLM.from_pretrained(\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/models/auto/auto_factory.py\", line 600, in from_pretrained\n",
|
||
" return model_class.from_pretrained(\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 311, in _wrapper\n",
|
||
" return func(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 4655, in from_pretrained\n",
|
||
" torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/quantizers/quantizer_spqr.py\", line 59, in update_torch_dtype\n",
|
||
" raise ValueError(\n",
|
||
"ValueError: You cannot use any type other than torch.float16 for SpQR. Please either leave it None or set it totorch.float16 explicitly.\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"json_string = '''\n",
|
||
"{\n",
|
||
" \"architectures\": [\n",
|
||
" \"LlamaForCausalLM\"\n",
|
||
" ],\n",
|
||
" \"attention_bias\": false,\n",
|
||
" \"bos_token_id\": 1,\n",
|
||
" \"eos_token_id\": 2,\n",
|
||
" \"hidden_act\": \"silu\",\n",
|
||
" \"hidden_size\": 2048,\n",
|
||
" \"initializer_range\": 0.02,\n",
|
||
" \"intermediate_size\": 5632,\n",
|
||
" \"max_position_embeddings\": 2048,\n",
|
||
" \"model_type\": \"llama\",\n",
|
||
" \"num_attention_heads\": 32,\n",
|
||
" \"num_hidden_layers\": 22,\n",
|
||
" \"num_key_value_heads\": 4,\n",
|
||
" \"pretraining_tp\": 1,\n",
|
||
" \"rms_norm_eps\": 1e-05,\n",
|
||
" \"rope_scaling\": null,\n",
|
||
" \"rope_theta\": 10000.0,\n",
|
||
" \"tie_word_embeddings\": false,\n",
|
||
" \"torch_dtype\": \"bfloat16\",\n",
|
||
" \"transformers_version\": \"4.35.0\",\n",
|
||
" \"use_cache\": true,\n",
|
||
" \"vocab_size\": 32000,\n",
|
||
" \"quantization_config\": {\n",
|
||
" \"quant_method\": \"spqr\",\n",
|
||
" \"beta1\": 16,\n",
|
||
" \"beta2\": 16,\n",
|
||
" \"bits\": 3\n",
|
||
" }\n",
|
||
"}\n",
|
||
"'''\n",
|
||
"\n",
|
||
"data = json.loads(json_string)\n",
|
||
"data[\"torch_dtype\"] = \"bfloat16\"\n",
|
||
"updated_str = json.dumps(data, indent=2)\n",
|
||
"print(updated_str)"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "OfsLodJ1Umyv",
|
||
"outputId": "379a4a77-f8a6-4002-eabb-e7b1148dc352"
|
||
},
|
||
"execution_count": 44,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"{\n",
|
||
" \"architectures\": [\n",
|
||
" \"LlamaForCausalLM\"\n",
|
||
" ],\n",
|
||
" \"attention_bias\": false,\n",
|
||
" \"bos_token_id\": 1,\n",
|
||
" \"eos_token_id\": 2,\n",
|
||
" \"hidden_act\": \"silu\",\n",
|
||
" \"hidden_size\": 2048,\n",
|
||
" \"initializer_range\": 0.02,\n",
|
||
" \"intermediate_size\": 5632,\n",
|
||
" \"max_position_embeddings\": 2048,\n",
|
||
" \"model_type\": \"llama\",\n",
|
||
" \"num_attention_heads\": 32,\n",
|
||
" \"num_hidden_layers\": 22,\n",
|
||
" \"num_key_value_heads\": 4,\n",
|
||
" \"pretraining_tp\": 1,\n",
|
||
" \"rms_norm_eps\": 1e-05,\n",
|
||
" \"rope_scaling\": null,\n",
|
||
" \"rope_theta\": 10000.0,\n",
|
||
" \"tie_word_embeddings\": false,\n",
|
||
" \"torch_dtype\": \"bfloat16\",\n",
|
||
" \"transformers_version\": \"4.35.0\",\n",
|
||
" \"use_cache\": true,\n",
|
||
" \"vocab_size\": 32000,\n",
|
||
" \"quantization_config\": {\n",
|
||
" \"quant_method\": \"spqr\",\n",
|
||
" \"beta1\": 16,\n",
|
||
" \"beta2\": 16,\n",
|
||
" \"bits\": 3\n",
|
||
" }\n",
|
||
"}\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [],
|
||
"metadata": {
|
||
"id": "xAp8jlPLX04m"
|
||
},
|
||
"execution_count": 42,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n",
|
||
" \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n",
|
||
" --outlier_threshold=0.2 --nsamples 128"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "chqw-1G6UmwH",
|
||
"outputId": "721c2c70-785d-4de4-e66d-5c35a746cad4"
|
||
},
|
||
"execution_count": 43,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"============ Loading model... ============\n",
|
||
"Loading pretrained model ...\n",
|
||
"2025-07-24 17:00:29.814365: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
||
"E0000 00:00:1753376429.834383 8639 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||
"E0000 00:00:1753376429.841005 8639 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||
"Traceback (most recent call last):\n",
|
||
" File \"/content/SpQR/main.py\", line 577, in <module>\n",
|
||
" model = get_model(args.model_path, args.load, args.dtype).train(False)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/content/SpQR/modelutils.py\", line 45, in get_model\n",
|
||
" model = AutoModelForCausalLM.from_pretrained(\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/models/auto/auto_factory.py\", line 600, in from_pretrained\n",
|
||
" return model_class.from_pretrained(\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 311, in _wrapper\n",
|
||
" return func(*args, **kwargs)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 4655, in from_pretrained\n",
|
||
" torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)\n",
|
||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||
" File \"/usr/local/lib/python3.11/dist-packages/transformers/quantizers/quantizer_spqr.py\", line 59, in update_torch_dtype\n",
|
||
" raise ValueError(\n",
|
||
"ValueError: You cannot use any type other than torch.float16 for SpQR. Please either leave it None or set it totorch.float16 explicitly.\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"!pip install spqr_quant[gpu]"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "ts59qeGLd_I9",
|
||
"outputId": "cdd406aa-e534-4e68-b2b4-62853ee66b79"
|
||
},
|
||
"execution_count": 49,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Requirement already satisfied: spqr_quant[gpu] in /usr/local/lib/python3.11/dist-packages (0.2.0)\n",
|
||
"Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (2.6.0+cu124)\n",
|
||
"Requirement already satisfied: transformers>=4.44.0 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (4.53.2)\n",
|
||
"Requirement already satisfied: safetensors>=0.4.5 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (0.5.3)\n",
|
||
"Requirement already satisfied: ninja in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (1.11.1.4)\n",
|
||
"Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.18.0)\n",
|
||
"Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (4.14.1)\n",
|
||
"Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.5)\n",
|
||
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.1.6)\n",
|
||
"Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (2023.10.0)\n",
|
||
"Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: nvidia-cuda-runtime-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: nvidia-cuda-cupti-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (9.1.0.70)\n",
|
||
"Requirement already satisfied: nvidia-cublas-cu12==12.4.5.8 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.5.8)\n",
|
||
"Requirement already satisfied: nvidia-cufft-cu12==11.2.1.3 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (11.2.1.3)\n",
|
||
"Requirement already satisfied: nvidia-curand-cu12==10.3.5.147 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (10.3.5.147)\n",
|
||
"Requirement already satisfied: nvidia-cusolver-cu12==11.6.1.9 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (11.6.1.9)\n",
|
||
"Requirement already satisfied: nvidia-cusparse-cu12==12.3.1.170 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.3.1.170)\n",
|
||
"Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (0.6.2)\n",
|
||
"Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (2.21.5)\n",
|
||
"Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: nvidia-nvjitlink-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n",
|
||
"Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.2.0)\n",
|
||
"Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (1.13.1)\n",
|
||
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=2.4.0->spqr_quant[gpu]) (1.3.0)\n",
|
||
"Requirement already satisfied: huggingface-hub<1.0,>=0.30.0 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (0.33.4)\n",
|
||
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2.0.2)\n",
|
||
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (25.0)\n",
|
||
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (6.0.2)\n",
|
||
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2024.11.6)\n",
|
||
"Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2.32.3)\n",
|
||
"Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (0.21.2)\n",
|
||
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (4.67.1)\n",
|
||
"Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.30.0->transformers>=4.44.0->spqr_quant[gpu]) (1.1.5)\n",
|
||
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=2.4.0->spqr_quant[gpu]) (3.0.2)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (3.4.2)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (3.10)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (2.5.0)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (2025.7.14)\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
||
"\n",
|
||
"model_name_path = local_dir\n",
|
||
"\n",
|
||
"model_dtype = AutoModelForCausalLM.from_pretrained(model_name_path,\n",
|
||
" torch_dtype=torch.float16,\n",
|
||
" device_map=\"auto\",\n",
|
||
" trust_remote_code=True\n",
|
||
" )\n"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 596
|
||
},
|
||
"id": "ZkoJFkweUmtv",
|
||
"outputId": "18b09a5c-3f43-4dc5-b7e5-99a3163b26cd"
|
||
},
|
||
"execution_count": 52,
|
||
"outputs": [
|
||
{
|
||
"output_type": "error",
|
||
"ename": "ImportError",
|
||
"evalue": "Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
||
"\u001b[0;32m/tmp/ipython-input-52-2491796096.py\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mmodel_name_path\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlocal_dir\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m model_dtype = AutoModelForCausalLM.from_pretrained(model_name_path, \n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mtorch_dtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat16\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mdevice_map\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"auto\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/models/auto/auto_factory.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 598\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmodel_class\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig_class\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msub_configs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"text_config\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 599\u001b[0m \u001b[0mconfig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_text_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 600\u001b[0;31m return model_class.from_pretrained(\n\u001b[0m\u001b[1;32m 601\u001b[0m \u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmodel_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mhub_kwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 602\u001b[0m )\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36m_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0mold_dtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_default_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 310\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 311\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 312\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 313\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_default_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mold_dtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, weights_only, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 4646\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4647\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhf_quantizer\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4648\u001b[0;31m hf_quantizer.validate_environment(\n\u001b[0m\u001b[1;32m 4649\u001b[0m \u001b[0mtorch_dtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch_dtype\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4650\u001b[0m \u001b[0mfrom_tf\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfrom_tf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/quantizers/quantizer_spqr.py\u001b[0m in \u001b[0;36mvalidate_environment\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_spqr_available\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate_torch_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtorch_dtype\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"torch.dtype\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;34m\"torch.dtype\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;31mImportError\u001b[0m: Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`",
|
||
"",
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0;32m\nNOTE: If your import is failing due to a missing package, you can\nmanually install dependencies using either !pip or !apt.\n\nTo view examples of installing some common dependencies, click the\n\"Open Examples\" button below.\n\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n"
|
||
],
|
||
"errorDetails": {
|
||
"actions": [
|
||
{
|
||
"action": "open_url",
|
||
"actionText": "Open Examples",
|
||
"url": "/notebooks/snippets/importing_libraries.ipynb"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"import spqr_quant"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000
|
||
},
|
||
"id": "aob87KQfUmrA",
|
||
"outputId": "0a285444-eb56-4576-be47-b955b13a3054"
|
||
},
|
||
"execution_count": 54,
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stderr",
|
||
"text": [
|
||
"/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py:2059: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. \n",
|
||
"If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].\n",
|
||
" warnings.warn(\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "error",
|
||
"ename": "RuntimeError",
|
||
"evalue": "Error building extension 'spqr_cuda': [1/3] /usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output spqr_cuda_kernel.cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=compute_75 -gencode=arch=compute_75,code=sm_75 --compiler-options '-fPIC' -O3 -arch=native -lineinfo -std=c++17 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu -o spqr_cuda_kernel.cuda.o \nFAILED: spqr_cuda_kernel.cuda.o \n/usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output spqr_cuda_kernel.cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=compute_75 -gencode=arch=compute_75,code=sm_75 --compiler-options '-fPIC' -O3 -arch=native -lineinfo -std=c++17 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu -o spqr_cuda_kernel.cuda.o \n/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu(162): warning #177-D: variable \"SHARED_OFFSET\" was declared but never referenced\n static constexpr u32 SHARED_OFFSET = 32;\n ^\n\nRemark: The warnings can be suppressed with \"-diag-suppress <warning-number>\"\n\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 1315; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 2719; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 4115; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 5516; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 6941; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 8444; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 9876; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 11300; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 12727; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 14178; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 15594; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 17012; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 18422; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 19837; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 21276; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 22793; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 24239; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 25677; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 27118; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 28583; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas fatal : Ptx assembly aborted due to errors\n[2/3] c++ -MMD -MF spqr_cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda.cpp -o spqr_cuda.o \nIn file included from /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda.cpp:17:\n/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/common.cuh:89:31: warning: ‘maybe_unused’ attribute ignored [-Wattributes]\n 89 | [[maybe_unused]] int sanity{};\n | ^\nninja: build stopped: subcommand failed.\n",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mCalledProcessError\u001b[0m Traceback (most recent call last)",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_run_ninja_build\u001b[0;34m(build_directory, verbose, error_prefix)\u001b[0m\n\u001b[1;32m 2208\u001b[0m \u001b[0mstdout_fileno\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2209\u001b[0;31m subprocess.run(\n\u001b[0m\u001b[1;32m 2210\u001b[0m \u001b[0mcommand\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/lib/python3.11/subprocess.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(input, capture_output, timeout, check, *popenargs, **kwargs)\u001b[0m\n\u001b[1;32m 570\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcheck\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mretcode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 571\u001b[0;31m raise CalledProcessError(retcode, process.args,\n\u001b[0m\u001b[1;32m 572\u001b[0m output=stdout, stderr=stderr)\n",
|
||
"\u001b[0;31mCalledProcessError\u001b[0m: Command '['ninja', '-v']' returned non-zero exit status 1.",
|
||
"\nThe above exception was the direct cause of the following exception:\n",
|
||
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
|
||
"\u001b[0;32m/tmp/ipython-input-54-1571779815.py\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mspqr_quant\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0minference\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mQuantizedLinear\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0minference_kernels\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_spqr_mul_fused\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_spqr_mul_timer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_torch_mul_timer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/inference.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTensor\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m from .inference_kernels.cuda_kernel import (\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0mcall_dequantize_compressed\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0mcall_spqr_mul\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/cuda_kernel.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mCUDA_FOLDER\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirname\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m__file__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m SPQR_CUDA = load(\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"spqr_cuda\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0msources\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCUDA_FOLDER\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"spqr_cuda.cpp\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCUDA_FOLDER\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"spqr_cuda_kernel.cu\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda, is_python_module, is_standalone, keep_intermediates)\u001b[0m\n\u001b[1;32m 1378\u001b[0m ... verbose=True)\n\u001b[1;32m 1379\u001b[0m \"\"\"\n\u001b[0;32m-> 1380\u001b[0;31m return _jit_compile(\n\u001b[0m\u001b[1;32m 1381\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1382\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0msources\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msources\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0msources\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_jit_compile\u001b[0;34m(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda, is_python_module, is_standalone, keep_intermediates)\u001b[0m\n\u001b[1;32m 1796\u001b[0m \u001b[0msources\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhipified_sources\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1797\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1798\u001b[0;31m _write_ninja_file_and_build_library(\n\u001b[0m\u001b[1;32m 1799\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1800\u001b[0m \u001b[0msources\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msources\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_write_ninja_file_and_build_library\u001b[0;34m(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda, is_standalone)\u001b[0m\n\u001b[1;32m 1924\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1925\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'Building extension module {name}...'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstderr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1926\u001b[0;31m _run_ninja_build(\n\u001b[0m\u001b[1;32m 1927\u001b[0m \u001b[0mbuild_directory\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1928\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_run_ninja_build\u001b[0;34m(build_directory, verbose, error_prefix)\u001b[0m\n\u001b[1;32m 2223\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'output'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# type: ignore[union-attr]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2224\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34mf\": {error.output.decode(*SUBPROCESS_DECODE_ARGS)}\"\u001b[0m \u001b[0;31m# type: ignore[union-attr]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2225\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2226\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2227\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;31mRuntimeError\u001b[0m: Error building extension 'spqr_cuda': [1/3] /usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output spqr_cuda_kernel.cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=compute_75 -gencode=arch=compute_75,code=sm_75 --compiler-options '-fPIC' -O3 -arch=native -lineinfo -std=c++17 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu -o spqr_cuda_kernel.cuda.o \nFAILED: spqr_cuda_kernel.cuda.o \n/usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output spqr_cuda_kernel.cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=compute_75 -gencode=arch=compute_75,code=sm_75 --compiler-options '-fPIC' -O3 -arch=native -lineinfo -std=c++17 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu -o spqr_cuda_kernel.cuda.o \n/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu(162): warning #177-D: variable \"SHARED_OFFSET\" was declared but never referenced\n static constexpr u32 SHARED_OFFSET = 32;\n ^\n\nRemark: The warnings can be suppressed with \"-diag-suppress <warning-number>\"\n\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 1315; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 2719; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 4115; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 5516; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 6941; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 8444; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 9876; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 11300; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 12727; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 14178; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 15594; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 17012; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 18422; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 19837; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 21276; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 22793; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 24239; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 25677; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 27118; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 28583; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas fatal : Ptx assembly aborted due to errors\n[2/3] c++ -MMD -MF spqr_cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda.cpp -o spqr_cuda.o \nIn file included from /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda.cpp:17:\n/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/common.cuh:89:31: warning: ‘maybe_unused’ attribute ignored [-Wattributes]\n 89 | [[maybe_unused]] int sanity{};\n | ^\nninja: build stopped: subcommand failed.\n"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"source": [
|
||
"According to AI, the GPU (Tesla T4) arhictecture is not compatible with sm_75. Analyzing above error stack trace, we can conclude that sm in this environment is apparently below 80, and therefore, this will fail."
|
||
],
|
||
"metadata": {
|
||
"id": "ujBQM-y7nNhn"
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"import os\n",
|
||
"\n",
|
||
"os.environ[\"TORCH_CUDA_ARCH_LIST\"] = \"7.5\""
|
||
],
|
||
"metadata": {
|
||
"id": "3K0n9qecUmof"
|
||
},
|
||
"execution_count": 55,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [
|
||
"import spqr_quant"
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 506
|
||
},
|
||
"id": "s_F_3NTkUml4",
|
||
"outputId": "4f89157b-3b13-4001-e58a-ee9935eb1f1c"
|
||
},
|
||
"execution_count": 56,
|
||
"outputs": [
|
||
{
|
||
"output_type": "error",
|
||
"ename": "ImportError",
|
||
"evalue": "/root/.cache/torch_extensions/py311_cu124/spqr_cuda/spqr_cuda.so: cannot open shared object file: No such file or directory",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
||
"\u001b[0;32m/tmp/ipython-input-56-1571779815.py\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mspqr_quant\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0minference\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mQuantizedLinear\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0minference_kernels\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_spqr_mul_fused\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_spqr_mul_timer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_torch_mul_timer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/inference.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTensor\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m from .inference_kernels.cuda_kernel import (\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0mcall_dequantize_compressed\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0mcall_spqr_mul\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/cuda_kernel.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mCUDA_FOLDER\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirname\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m__file__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m SPQR_CUDA = load(\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"spqr_cuda\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0msources\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCUDA_FOLDER\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"spqr_cuda.cpp\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCUDA_FOLDER\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"spqr_cuda_kernel.cu\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda, is_python_module, is_standalone, keep_intermediates)\u001b[0m\n\u001b[1;32m 1378\u001b[0m ... verbose=True)\n\u001b[1;32m 1379\u001b[0m \"\"\"\n\u001b[0;32m-> 1380\u001b[0;31m return _jit_compile(\n\u001b[0m\u001b[1;32m 1381\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1382\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0msources\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msources\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0msources\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_jit_compile\u001b[0;34m(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda, is_python_module, is_standalone, keep_intermediates)\u001b[0m\n\u001b[1;32m 1821\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_get_exec_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbuild_directory\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1822\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1823\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_import_module_from_library\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbuild_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mis_python_module\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1824\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1825\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_import_module_from_library\u001b[0;34m(module_name, path, is_python_module)\u001b[0m\n\u001b[1;32m 2243\u001b[0m \u001b[0mspec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutil\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspec_from_file_location\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilepath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2244\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0mspec\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2245\u001b[0;31m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutil\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_from_spec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspec\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2246\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspec\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloader\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLoader\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2247\u001b[0m \u001b[0mspec\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexec_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;31mImportError\u001b[0m: /root/.cache/torch_extensions/py311_cu124/spqr_cuda/spqr_cuda.so: cannot open shared object file: No such file or directory",
|
||
"",
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0;32m\nNOTE: If your import is failing due to a missing package, you can\nmanually install dependencies using either !pip or !apt.\n\nTo view examples of installing some common dependencies, click the\n\"Open Examples\" button below.\n\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n"
|
||
],
|
||
"errorDetails": {
|
||
"actions": [
|
||
{
|
||
"action": "open_url",
|
||
"actionText": "Open Examples",
|
||
"url": "/notebooks/snippets/importing_libraries.ipynb"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"source": [
|
||
"I have tried everything out, but I could not make it work. I think Google Colab does not support the required GPU architecture (sm>=80 required, but sm_75 is installed).\n",
|
||
"\n",
|
||
"Since no pre-quantized models could be found (combination SpQR and TinyLlama) on the internet, I assume that this combination is a problem and does not work out. Taking a look into the Readme.md file from SPQR repo, we find that SpQR in particular was tested on GPU A100 (Nvidia). Moreover, we find that SpQR is optimized for running models from the Llama Familiy, among others,, and although TinyLlama is based on Llama, we think that there are some major modifications made to TinyLlama which do not allow to apply SpQR to TinyLLama right now.\n",
|
||
"\n",
|
||
"We tried to mitigate the potential problems that were shown here in this notebook but we were not able to find a way to mitigate those. We tried to edit the data type and to \"manipulate\" TinyLLama's config.json, which we were able to do but quantizing still did not work, and this might be due to incompoatible hardware on Google Colab."
|
||
],
|
||
"metadata": {
|
||
"id": "nxG53mnRp_Um"
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [],
|
||
"metadata": {
|
||
"id": "Wc13uMCbUmg6"
|
||
},
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [],
|
||
"metadata": {
|
||
"id": "YWKQEfGLUmbx"
|
||
},
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [],
|
||
"metadata": {
|
||
"id": "VGV4tKjQUmZR"
|
||
},
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [],
|
||
"metadata": {
|
||
"id": "sRPPPAyXUmWZ"
|
||
},
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"source": [],
|
||
"metadata": {
|
||
"id": "Me7cQ7aVdYqn"
|
||
},
|
||
"execution_count": 27,
|
||
"outputs": []
|
||
}
|
||
]
|
||
} |