{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU", "widgets": { "application/vnd.jupyter.widget-state+json": { "ef495d16dd1a4f23be512d86f4b2800b": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a71f86b74b7f42d88266be2bc79a2c30", "IPY_MODEL_cb557d42a7d345c0934604036a93bc10", "IPY_MODEL_c95e9deefff24265bb7aaefcee32a044" ], "layout": "IPY_MODEL_7c4e99924b9449bc8a930002d8ba83fc" } }, "a71f86b74b7f42d88266be2bc79a2c30": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_750d241ac10e4d06903aad102164d983", "placeholder": "​", "style": "IPY_MODEL_aa9cce0280794b9aae6074653ec61636", "value": "Fetching 10 files: 100%" } }, "cb557d42a7d345c0934604036a93bc10": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1946cfddd06743b588ae787a0cea42aa", "max": 10, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_c0625a79528f48dc8ee64459d2909b79", "value": 10 } }, "c95e9deefff24265bb7aaefcee32a044": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_adb22899471442589285fd41312a503f", "placeholder": "​", "style": "IPY_MODEL_a6e55e6f062143e7823fc585a530fc56", "value": " 10/10 [00:15<00:00,  2.67s/it]" } }, "7c4e99924b9449bc8a930002d8ba83fc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "750d241ac10e4d06903aad102164d983": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aa9cce0280794b9aae6074653ec61636": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1946cfddd06743b588ae787a0cea42aa": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c0625a79528f48dc8ee64459d2909b79": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "adb22899471442589285fd41312a503f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a6e55e6f062143e7823fc585a530fc56": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c4f91f5988cf4e2abababec9e5904a73": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_686fe40fc8924f65843cd6029d719bc5", "IPY_MODEL_34de9719c9ee465493ae92912eff1989", "IPY_MODEL_a97203da20354f708de631b59fc42e0e" ], "layout": "IPY_MODEL_e4188c6d219141f7bd1e15dd05d1bb1a" } }, "686fe40fc8924f65843cd6029d719bc5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1133635a5e6947de89b7ba00339d8fc5", "placeholder": "​", "style": "IPY_MODEL_b68f3994adc24215bbe0b07329a7a811", "value": ".gitattributes: " } }, "34de9719c9ee465493ae92912eff1989": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b4fa7ff09fc149309150fb56acf5cb92", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6a0623311261475f989c6d8e3e17cb87", "value": 1 } }, "a97203da20354f708de631b59fc42e0e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9fc84d5a4ffd47858ee1ff674d5b2b68", "placeholder": "​", "style": "IPY_MODEL_351b929d9fd442328f0b9cf8af9c8f0f", "value": " 1.52k/? [00:00<00:00, 28.6kB/s]" } }, "e4188c6d219141f7bd1e15dd05d1bb1a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1133635a5e6947de89b7ba00339d8fc5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b68f3994adc24215bbe0b07329a7a811": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b4fa7ff09fc149309150fb56acf5cb92": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "6a0623311261475f989c6d8e3e17cb87": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "9fc84d5a4ffd47858ee1ff674d5b2b68": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "351b929d9fd442328f0b9cf8af9c8f0f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e0a2fdf5f7c8420abea56470a099cf96": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_80b3597ba1634c1bbc511f8beabef0bb", "IPY_MODEL_86eb445c83fc4fdd8471ae3c1190d244", "IPY_MODEL_5f55e430c0e8427b95e0e428074359b8" ], "layout": "IPY_MODEL_d61162836a35450dbb43622b4d7603b1" } }, "80b3597ba1634c1bbc511f8beabef0bb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8b109b26541042fdafef1ce9a0f36472", "placeholder": "​", "style": "IPY_MODEL_d3a13151ff334b778ad9dc3020b205cb", "value": "README.md: " } }, "86eb445c83fc4fdd8471ae3c1190d244": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3661e1e07bc1448c998c7fefd5270dab", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_b3b5b109dfec414aba0eecd379a47466", "value": 1 } }, "5f55e430c0e8427b95e0e428074359b8": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_38be34645710407e94c18b1f6817ed43", "placeholder": "​", "style": "IPY_MODEL_8b054e76588144a6ab6c2633a65c5ee0", "value": " 3.20k/? [00:00<00:00, 74.7kB/s]" } }, "d61162836a35450dbb43622b4d7603b1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8b109b26541042fdafef1ce9a0f36472": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d3a13151ff334b778ad9dc3020b205cb": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3661e1e07bc1448c998c7fefd5270dab": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "b3b5b109dfec414aba0eecd379a47466": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "38be34645710407e94c18b1f6817ed43": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8b054e76588144a6ab6c2633a65c5ee0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b2719a37c1da4e4baba835fb5906e4e8": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_0d818aaeee424148a2316917e5c069da", "IPY_MODEL_f54cb3dbfeac4313ad0464ff3fb96dac", "IPY_MODEL_809986e2166947b38c5eed95a18efa8a" ], "layout": "IPY_MODEL_55dd322d5c1f443fbdd5a45617a91116" } }, "0d818aaeee424148a2316917e5c069da": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bf434f07b35844ca87f9f5c28d16e4a9", "placeholder": "​", "style": "IPY_MODEL_e730394b81db4c7ca5feeac4a525f344", "value": "eval_results.json: 100%" } }, "f54cb3dbfeac4313ad0464ff3fb96dac": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8519cf30feb440eda826f6beaf1646b2", "max": 566, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_1605a710077b412c9a5176cd285d0ea6", "value": 566 } }, "809986e2166947b38c5eed95a18efa8a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ad17f55244f34f4e9fc82aafab34b538", "placeholder": "​", "style": "IPY_MODEL_20dd6544bee74c019ec23272cac6e0ba", "value": " 566/566 [00:00<00:00, 7.31kB/s]" } }, "55dd322d5c1f443fbdd5a45617a91116": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bf434f07b35844ca87f9f5c28d16e4a9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e730394b81db4c7ca5feeac4a525f344": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "8519cf30feb440eda826f6beaf1646b2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1605a710077b412c9a5176cd285d0ea6": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "ad17f55244f34f4e9fc82aafab34b538": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "20dd6544bee74c019ec23272cac6e0ba": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6b770f28de264dc7bf61588443f4e865": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_6100ed8b785f4550934154598059a33c", "IPY_MODEL_862f8584e1734baa860be6f77174bbc6", "IPY_MODEL_f189ddb799c144bcaa85484a4fe270a9" ], "layout": "IPY_MODEL_3a56d7bcae3646e99f0d5e44f7c62f6d" } }, "6100ed8b785f4550934154598059a33c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7a6f706aaf2f4d63a43b26e592e31787", "placeholder": "​", "style": "IPY_MODEL_a103635d634c4aebb5fad37e83b16c6a", "value": "config.json: 100%" } }, "862f8584e1734baa860be6f77174bbc6": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9588e29345ba46329262a01250007989", "max": 608, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2afd5aabc2734fee9c4291a96f6b94b4", "value": 608 } }, "f189ddb799c144bcaa85484a4fe270a9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cf5a5122e6464c0089d6d1f0bcd654e4", "placeholder": "​", "style": "IPY_MODEL_2ce6e39cf73b449db00e73587e8b960d", "value": " 608/608 [00:00<00:00, 6.30kB/s]" } }, "3a56d7bcae3646e99f0d5e44f7c62f6d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7a6f706aaf2f4d63a43b26e592e31787": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a103635d634c4aebb5fad37e83b16c6a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "9588e29345ba46329262a01250007989": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2afd5aabc2734fee9c4291a96f6b94b4": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "cf5a5122e6464c0089d6d1f0bcd654e4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2ce6e39cf73b449db00e73587e8b960d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "658981420ec74c32b9a5aa2fd12d65fb": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1680e40f7f634a4dbe26fc80d26d019f", "IPY_MODEL_7352763c56e44cf6b01e6f35cbc45f6c", "IPY_MODEL_1a74f2892d284c438dc9f8e979236c46" ], "layout": "IPY_MODEL_f2620c076e7245e9bb64c047189cef8f" } }, "1680e40f7f634a4dbe26fc80d26d019f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e854978dea614a6184cfdbe908dbbb7d", "placeholder": "​", "style": "IPY_MODEL_62feb19f455347c9ba026157b1aa8c6c", "value": "generation_config.json: 100%" } }, "7352763c56e44cf6b01e6f35cbc45f6c": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c045dbabf97248f2bc92fd511d0914ff", "max": 124, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_a8a4df10db514857b24002267415cbb4", "value": 124 } }, "1a74f2892d284c438dc9f8e979236c46": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_48a041c2e9524059b5f36edc99ae77fc", "placeholder": "​", "style": "IPY_MODEL_53d706caff2f4b968d8ddaed3449475c", "value": " 124/124 [00:00<00:00, 1.56kB/s]" } }, "f2620c076e7245e9bb64c047189cef8f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e854978dea614a6184cfdbe908dbbb7d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "62feb19f455347c9ba026157b1aa8c6c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c045dbabf97248f2bc92fd511d0914ff": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a8a4df10db514857b24002267415cbb4": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "48a041c2e9524059b5f36edc99ae77fc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "53d706caff2f4b968d8ddaed3449475c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d22fc1e159ac4ab1a9fa1562af765cc7": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ab31e4e465b445bc88ccda012e39c9e8", "IPY_MODEL_69d7dd7f4f9b4bf29f4185ba49abe03a", "IPY_MODEL_8982da26b3ab4a17801f13d90175a62d" ], "layout": "IPY_MODEL_2919034923814f11a86b9b6ff6c2f3fa" } }, "ab31e4e465b445bc88ccda012e39c9e8": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0fe23be8273c448bb454b37342be6085", "placeholder": "​", "style": "IPY_MODEL_99ebf39523d34ee7976cf685d15f2ba7", "value": "model.safetensors: 100%" } }, "69d7dd7f4f9b4bf29f4185ba49abe03a": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_33f687ead6784ae7a2e15e7e0a0b1036", "max": 2200119864, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_088a7da6b99c4c63b9a3fd15aa25ee0b", "value": 2200119864 } }, "8982da26b3ab4a17801f13d90175a62d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8b9026ff40284939b49d8d287641df28", "placeholder": "​", "style": "IPY_MODEL_4b1c7a48d23b46179e9cef5130df6399", "value": " 2.20G/2.20G [00:15<00:00, 183MB/s]" } }, "2919034923814f11a86b9b6ff6c2f3fa": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0fe23be8273c448bb454b37342be6085": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "99ebf39523d34ee7976cf685d15f2ba7": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "33f687ead6784ae7a2e15e7e0a0b1036": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "088a7da6b99c4c63b9a3fd15aa25ee0b": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8b9026ff40284939b49d8d287641df28": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4b1c7a48d23b46179e9cef5130df6399": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "2643002917114763920f0421fc83bc67": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_affa587d803f4476b39dafba6b465c11", "IPY_MODEL_0fe75d35713f4e578bb22d57124e6b91", "IPY_MODEL_cecf91c366e643058d61e6acca9512c1" ], "layout": "IPY_MODEL_41125f5d4d0d48b080208754c0462524" } }, "affa587d803f4476b39dafba6b465c11": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b1937d82a61f4d4fa0431a3c558748ab", "placeholder": "​", "style": "IPY_MODEL_53ee84296103418dbbc5f3ea0a3d2ad4", "value": "special_tokens_map.json: 100%" } }, "0fe75d35713f4e578bb22d57124e6b91": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fd61b8725e3f41e1afe7e7e29d99c417", "max": 551, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_0826103756d94005849f45cdbcb1d9fd", "value": 551 } }, "cecf91c366e643058d61e6acca9512c1": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_efd79e28736c4bd48c856e7646b303ac", "placeholder": "​", "style": "IPY_MODEL_0265104c4e7747fd9087792de45803c8", "value": " 551/551 [00:00<00:00, 17.6kB/s]" } }, "41125f5d4d0d48b080208754c0462524": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1937d82a61f4d4fa0431a3c558748ab": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "53ee84296103418dbbc5f3ea0a3d2ad4": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "fd61b8725e3f41e1afe7e7e29d99c417": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0826103756d94005849f45cdbcb1d9fd": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "efd79e28736c4bd48c856e7646b303ac": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0265104c4e7747fd9087792de45803c8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "8c2867ee87534277931486bd4032f7e0": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_95076527f50d4d8fbcd02933393f476a", "IPY_MODEL_0690ada1b0b44e1b8112de6813666fcf", "IPY_MODEL_9e386007d0f3409fb650329f81f84d81" ], "layout": "IPY_MODEL_575806acf4a94ff4b88546d90f486f32" } }, "95076527f50d4d8fbcd02933393f476a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bb91269428644df1babd1ae39341ec33", "placeholder": "​", "style": "IPY_MODEL_a19b5850abca49348553d87cc9695d2b", "value": "tokenizer.json: " } }, "0690ada1b0b44e1b8112de6813666fcf": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e9ecc447d5aa4a5f9341c94aecdeb403", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_26b2822ca8904593aa2a95d23068fcbb", "value": 1 } }, "9e386007d0f3409fb650329f81f84d81": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5e2dd7e5d39f4645ad53cb92ee056c02", "placeholder": "​", "style": "IPY_MODEL_504cf356c80e40c69d80d6af2bda4d19", "value": " 1.84M/? [00:00<00:00, 15.5MB/s]" } }, "575806acf4a94ff4b88546d90f486f32": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bb91269428644df1babd1ae39341ec33": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a19b5850abca49348553d87cc9695d2b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e9ecc447d5aa4a5f9341c94aecdeb403": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "26b2822ca8904593aa2a95d23068fcbb": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "5e2dd7e5d39f4645ad53cb92ee056c02": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "504cf356c80e40c69d80d6af2bda4d19": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "de310b63d1c8418388992fe569036203": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_52c870a107ff45ccac57fedfe40d5135", "IPY_MODEL_8155e6ea360e41f89e3f8432fc1a5314", "IPY_MODEL_59c98ddd8a6e44ed88e6785bfcac8821" ], "layout": "IPY_MODEL_8981e41b49bf4482b5903d3852ac0f02" } }, "52c870a107ff45ccac57fedfe40d5135": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e2c7a889c4704065a862f00c5b0f59d5", "placeholder": "​", "style": "IPY_MODEL_c2191171dd014e29816ff9da1c29003a", "value": "tokenizer_config.json: " } }, "8155e6ea360e41f89e3f8432fc1a5314": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b38f03393e084cd8a60fccc37423e806", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_8493e8b0e2d2455cb98161191da9727f", "value": 1 } }, "59c98ddd8a6e44ed88e6785bfcac8821": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6e42adf16d3343cba5d35cf25777598e", "placeholder": "​", "style": "IPY_MODEL_81a52af510494f10a6acb9f449f41e20", "value": " 1.29k/? [00:00<00:00, 29.3kB/s]" } }, "8981e41b49bf4482b5903d3852ac0f02": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e2c7a889c4704065a862f00c5b0f59d5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c2191171dd014e29816ff9da1c29003a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b38f03393e084cd8a60fccc37423e806": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "8493e8b0e2d2455cb98161191da9727f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6e42adf16d3343cba5d35cf25777598e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "81a52af510494f10a6acb9f449f41e20": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "06866706b5e24918b71ead17a4d85beb": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_492562169b04462f9d36375a5e4bb3fb", "IPY_MODEL_2c4edd5214de459fb2d8862944adb7da", "IPY_MODEL_0eebb5586f1e4b649bb375e79f5bec63" ], "layout": "IPY_MODEL_87160fec94c049fc808034e6cbc652c1" } }, "492562169b04462f9d36375a5e4bb3fb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_246acc02a5e5491c910a48b868d2a295", "placeholder": "​", "style": "IPY_MODEL_0fc5be4037a94e92893120f1c5d30b17", "value": "tokenizer.model: 100%" } }, "2c4edd5214de459fb2d8862944adb7da": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_35491086cd6248da9ce15da93519273a", "max": 499723, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_af8c9143672c484da309f3e8c486a118", "value": 499723 } }, "0eebb5586f1e4b649bb375e79f5bec63": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_36b7aa8e2c7249278838c6190fd8af98", "placeholder": "​", "style": "IPY_MODEL_973354c51a6244a9812dcd3a62b4a55a", "value": " 500k/500k [00:00<00:00, 3.44MB/s]" } }, "87160fec94c049fc808034e6cbc652c1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "246acc02a5e5491c910a48b868d2a295": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0fc5be4037a94e92893120f1c5d30b17": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "35491086cd6248da9ce15da93519273a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "af8c9143672c484da309f3e8c486a118": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "36b7aa8e2c7249278838c6190fd8af98": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "973354c51a6244a9812dcd3a62b4a55a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "w4eS0-nNc944", "outputId": "fcd66806-3c37-4101-e77b-5d5c43061aab" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Cloning into 'SpQR'...\n", "remote: Enumerating objects: 1511, done.\u001b[K\n", "remote: Counting objects: 100% (298/298), done.\u001b[K\n", "remote: Compressing objects: 100% (131/131), done.\u001b[K\n", "remote: Total 1511 (delta 216), reused 167 (delta 167), pack-reused 1213 (from 2)\u001b[K\n", "Receiving objects: 100% (1511/1511), 22.35 MiB | 11.05 MiB/s, done.\n", "Resolving deltas: 100% (544/544), done.\n", "/content/SpQR\n" ] } ], "source": [ "!git clone https://github.com/Vahe1994/SpQR.git\n", "%cd SpQR" ] }, { "cell_type": "code", "source": [ "!pip install -r requirements.txt" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gka6qcIfdZDi", "outputId": "7f677c82-1674-4f55-da01-843ff1e99b8d" }, "execution_count": 3, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Requirement already satisfied: safetensors in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 1)) (0.5.3)\n", "Collecting datasets>=2.16.1 (from -r requirements.txt (line 2))\n", " Downloading datasets-4.0.0-py3-none-any.whl.metadata (19 kB)\n", "Collecting sentencepiece==0.1.97 (from -r requirements.txt (line 3))\n", " Downloading sentencepiece-0.1.97.tar.gz (524 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m524.7/524.7 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Requirement already satisfied: transformers>=4.36 in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 4)) (4.53.2)\n", "Requirement already satisfied: accelerate>=0.26.0 in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 5)) (1.9.0)\n", "Requirement already satisfied: tokenizers>=0.14.1 in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 6)) (0.21.2)\n", "Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.11/dist-packages (from -r requirements.txt (line 7)) (2.6.0+cu124)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (3.18.0)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (2.0.2)\n", "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (18.1.0)\n", "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (0.3.7)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (2.2.2)\n", "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (2.32.3)\n", "Requirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (4.67.1)\n", "Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (3.5.0)\n", "Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (0.70.15)\n", "Collecting fsspec<=2025.3.0,>=2023.1.0 (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2))\n", " Downloading fsspec-2025.3.0-py3-none-any.whl.metadata (11 kB)\n", "Requirement already satisfied: huggingface-hub>=0.24.0 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (0.33.4)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (25.0)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.1->-r requirements.txt (line 2)) (6.0.2)\n", "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.36->-r requirements.txt (line 4)) (2024.11.6)\n", "Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from accelerate>=0.26.0->-r requirements.txt (line 5)) (5.9.5)\n", "Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (4.14.1)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (3.5)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (3.1.6)\n", "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", "Collecting nvidia-curand-cu12==10.3.5.147 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", "Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (0.6.2)\n", "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (2.21.5)\n", "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (12.4.127)\n", "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch>=2.4.0->-r requirements.txt (line 7))\n", " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", "Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (3.2.0)\n", "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->-r requirements.txt (line 7)) (1.13.1)\n", "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=2.4.0->-r requirements.txt (line 7)) (1.3.0)\n", "Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /usr/local/lib/python3.11/dist-packages (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (3.11.15)\n", "Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.24.0->datasets>=2.16.1->-r requirements.txt (line 2)) (1.1.5)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.1->-r requirements.txt (line 2)) (3.4.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.1->-r requirements.txt (line 2)) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.1->-r requirements.txt (line 2)) (2.5.0)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.1->-r requirements.txt (line 2)) (2025.7.14)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=2.4.0->-r requirements.txt (line 7)) (3.0.2)\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.1->-r requirements.txt (line 2)) (2.9.0.post0)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.1->-r requirements.txt (line 2)) (2025.2)\n", "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.1->-r requirements.txt (line 2)) (2025.2)\n", "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (2.6.1)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (1.4.0)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (25.3.0)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (1.7.0)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (6.6.3)\n", "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (0.3.2)\n", "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.16.1->-r requirements.txt (line 2)) (1.20.1)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.16.1->-r requirements.txt (line 2)) (1.17.0)\n", "Downloading datasets-4.0.0-py3-none-any.whl (494 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m494.8/494.8 kB\u001b[0m \u001b[31m36.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m36.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m35.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m43.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m102.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading fsspec-2025.3.0-py3-none-any.whl (193 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m193.6/193.6 kB\u001b[0m \u001b[31m18.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hBuilding wheels for collected packages: sentencepiece\n", " Building wheel for sentencepiece (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for sentencepiece: filename=sentencepiece-0.1.97-cp311-cp311-linux_x86_64.whl size=1244400 sha256=1781e7c94c7f20ae3b1b23f40ad38c8cd67de9accc47d7413d76dc824f44c204\n", " Stored in directory: /root/.cache/pip/wheels/04/dd/ab/6e3d4b6b17fe7ca0f54548ae20941c40bb3f15839d66f5598c\n", "Successfully built sentencepiece\n", "Installing collected packages: sentencepiece, nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, fsspec, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, datasets\n", " Attempting uninstall: sentencepiece\n", " Found existing installation: sentencepiece 0.2.0\n", " Uninstalling sentencepiece-0.2.0:\n", " Successfully uninstalled sentencepiece-0.2.0\n", " Attempting uninstall: nvidia-nvjitlink-cu12\n", " Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n", " Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n", " Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n", " Attempting uninstall: nvidia-curand-cu12\n", " Found existing installation: nvidia-curand-cu12 10.3.6.82\n", " Uninstalling nvidia-curand-cu12-10.3.6.82:\n", " Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n", " Attempting uninstall: nvidia-cufft-cu12\n", " Found existing installation: nvidia-cufft-cu12 11.2.3.61\n", " Uninstalling nvidia-cufft-cu12-11.2.3.61:\n", " Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n", " Attempting uninstall: nvidia-cuda-runtime-cu12\n", " Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n", " Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n", " Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n", " Attempting uninstall: nvidia-cuda-nvrtc-cu12\n", " Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n", " Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n", " Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n", " Attempting uninstall: nvidia-cuda-cupti-cu12\n", " Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n", " Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n", " Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n", " Attempting uninstall: nvidia-cublas-cu12\n", " Found existing installation: nvidia-cublas-cu12 12.5.3.2\n", " Uninstalling nvidia-cublas-cu12-12.5.3.2:\n", " Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n", " Attempting uninstall: fsspec\n", " Found existing installation: fsspec 2025.7.0\n", " Uninstalling fsspec-2025.7.0:\n", " Successfully uninstalled fsspec-2025.7.0\n", " Attempting uninstall: nvidia-cusparse-cu12\n", " Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n", " Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n", " Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n", " Attempting uninstall: nvidia-cudnn-cu12\n", " Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n", " Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n", " Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n", " Attempting uninstall: nvidia-cusolver-cu12\n", " Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n", " Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n", " Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n", " Attempting uninstall: datasets\n", " Found existing installation: datasets 2.14.4\n", " Uninstalling datasets-2.14.4:\n", " Successfully uninstalled datasets-2.14.4\n", "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "gcsfs 2025.7.0 requires fsspec==2025.7.0, but you have fsspec 2025.3.0 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0mSuccessfully installed datasets-4.0.0 fsspec-2025.3.0 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127 sentencepiece-0.1.97\n" ] } ] }, { "cell_type": "code", "source": [ "!pip install fsspec==2025.7.0" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vuK9njwBdZBw", "outputId": "e3041577-f9de-4832-fe2d-432ecb9bb032" }, "execution_count": 4, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting fsspec==2025.7.0\n", " Downloading fsspec-2025.7.0-py3-none-any.whl.metadata (12 kB)\n", "Downloading fsspec-2025.7.0-py3-none-any.whl (199 kB)\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/199.6 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━\u001b[0m \u001b[32m194.6/199.6 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.6/199.6 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hInstalling collected packages: fsspec\n", " Attempting uninstall: fsspec\n", " Found existing installation: fsspec 2025.3.0\n", " Uninstalling fsspec-2025.3.0:\n", " Successfully uninstalled fsspec-2025.3.0\n", "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "datasets 4.0.0 requires fsspec[http]<=2025.3.0,>=2023.1.0, but you have fsspec 2025.7.0 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0mSuccessfully installed fsspec-2025.7.0\n" ] } ] }, { "cell_type": "code", "source": [ "!pip install datasets==2.16.1" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Z24jgE_udY9X", "outputId": "b587e0c6-27e0-437d-fd72-7c1fdd9e7fb8" }, "execution_count": 5, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting datasets==2.16.1\n", " Downloading datasets-2.16.1-py3-none-any.whl.metadata (20 kB)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (3.18.0)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (2.0.2)\n", "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (18.1.0)\n", "Collecting pyarrow-hotfix (from datasets==2.16.1)\n", " Downloading pyarrow_hotfix-0.7-py3-none-any.whl.metadata (3.6 kB)\n", "Requirement already satisfied: dill<0.3.8,>=0.3.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (0.3.7)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (2.2.2)\n", "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (2.32.3)\n", "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (4.67.1)\n", "Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (3.5.0)\n", "Requirement already satisfied: multiprocess in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (0.70.15)\n", "Collecting fsspec<=2023.10.0,>=2023.1.0 (from fsspec[http]<=2023.10.0,>=2023.1.0->datasets==2.16.1)\n", " Downloading fsspec-2023.10.0-py3-none-any.whl.metadata (6.8 kB)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (3.11.15)\n", "Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (0.33.4)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (25.0)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets==2.16.1) (6.0.2)\n", "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (2.6.1)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (1.4.0)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (25.3.0)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (1.7.0)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (6.6.3)\n", "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (0.3.2)\n", "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.16.1) (1.20.1)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.19.4->datasets==2.16.1) (4.14.1)\n", "Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.19.4->datasets==2.16.1) (1.1.5)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.16.1) (3.4.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.16.1) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.16.1) (2.5.0)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.16.1) (2025.7.14)\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.16.1) (2.9.0.post0)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.16.1) (2025.2)\n", "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.16.1) (2025.2)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->datasets==2.16.1) (1.17.0)\n", "Downloading datasets-2.16.1-py3-none-any.whl (507 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m507.1/507.1 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading fsspec-2023.10.0-py3-none-any.whl (166 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.4/166.4 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading pyarrow_hotfix-0.7-py3-none-any.whl (7.9 kB)\n", "Installing collected packages: pyarrow-hotfix, fsspec, datasets\n", " Attempting uninstall: fsspec\n", " Found existing installation: fsspec 2025.7.0\n", " Uninstalling fsspec-2025.7.0:\n", " Successfully uninstalled fsspec-2025.7.0\n", " Attempting uninstall: datasets\n", " Found existing installation: datasets 4.0.0\n", " Uninstalling datasets-4.0.0:\n", " Successfully uninstalled datasets-4.0.0\n", "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "gcsfs 2025.7.0 requires fsspec==2025.7.0, but you have fsspec 2023.10.0 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0mSuccessfully installed datasets-2.16.1 fsspec-2023.10.0 pyarrow-hotfix-0.7\n" ] } ] }, { "cell_type": "code", "source": [ "!pip install datasets==2.19.1" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ZlkUej9ddY7Q", "outputId": "0a9ea72c-406d-4ed2-841d-51b6668b83c3" }, "execution_count": 6, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting datasets==2.19.1\n", " Downloading datasets-2.19.1-py3-none-any.whl.metadata (19 kB)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (3.18.0)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (2.0.2)\n", "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (18.1.0)\n", "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (0.7)\n", "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (0.3.7)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (2.2.2)\n", "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (2.32.3)\n", "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (4.67.1)\n", "Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (3.5.0)\n", "Requirement already satisfied: multiprocess in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (0.70.15)\n", "Requirement already satisfied: fsspec<=2024.3.1,>=2023.1.0 in /usr/local/lib/python3.11/dist-packages (from fsspec[http]<=2024.3.1,>=2023.1.0->datasets==2.19.1) (2023.10.0)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (3.11.15)\n", "Requirement already satisfied: huggingface-hub>=0.21.2 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (0.33.4)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (25.0)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets==2.19.1) (6.0.2)\n", "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (2.6.1)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (1.4.0)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (25.3.0)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (1.7.0)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (6.6.3)\n", "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (0.3.2)\n", "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets==2.19.1) (1.20.1)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.21.2->datasets==2.19.1) (4.14.1)\n", "Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.21.2->datasets==2.19.1) (1.1.5)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.19.1) (3.4.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.19.1) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.19.1) (2.5.0)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->datasets==2.19.1) (2025.7.14)\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.19.1) (2.9.0.post0)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.19.1) (2025.2)\n", "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets==2.19.1) (2025.2)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->datasets==2.19.1) (1.17.0)\n", "Downloading datasets-2.19.1-py3-none-any.whl (542 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m542.0/542.0 kB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hInstalling collected packages: datasets\n", " Attempting uninstall: datasets\n", " Found existing installation: datasets 2.16.1\n", " Uninstalling datasets-2.16.1:\n", " Successfully uninstalled datasets-2.16.1\n", "Successfully installed datasets-2.19.1\n" ] } ] }, { "cell_type": "code", "source": [ "import importlib\n", "\n", "def print_package_version(package_name: str):\n", " try:\n", " package = importlib.import_module(package_name)\n", "\n", " if hasattr(package, \"__version__\"):\n", " print(f\"{package_name} version: {package.__version__}\")\n", " else:\n", " print(f\"Package '{package_name}' does not have a __version__ attribute.\")\n", " except ModuleNotFoundError:\n", " print(f\"Package '{package_name}' is not installed.\")\n", " except Exception as e:\n", " print(f\"Error while checking version of '{package_name}': {e}\")" ], "metadata": { "id": "HiqtOIeXdY41" }, "execution_count": 7, "outputs": [] }, { "cell_type": "code", "source": [ "print_package_version(\"datasets\")\n", "print_package_version(\"sentencepiece\")\n", "print_package_version(\"transformers\")\n", "print_package_version(\"accelerate\")\n", "print_package_version(\"tokenizers\")\n", "print_package_version(\"safetensors\")\n", "print_package_version(\"torch\")\n", "print_package_version(\"gcsfs\")\n", "print_package_version(\"fsspec\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "G8hUGiG-dY2g", "outputId": "b977f4ec-df6c-4d91-8e4c-3d966b3b2683" }, "execution_count": 8, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "datasets version: 2.19.1\n", "sentencepiece version: 0.1.97\n", "transformers version: 4.53.2\n", "accelerate version: 1.9.0\n", "tokenizers version: 0.21.2\n", "safetensors version: 0.5.3\n", "torch version: 2.6.0+cu124\n", "gcsfs version: 2025.7.0\n", "fsspec version: 2023.10.0\n" ] } ] }, { "cell_type": "code", "source": [ "!git lfs install" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "tVX9UHiddY0b", "outputId": "19e318e3-3311-454e-f040-394831d34874" }, "execution_count": 9, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Updated git hooks.\n", "Git LFS initialized.\n" ] } ] }, { "cell_type": "code", "source": [ "!git clone https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "iAXZ1RMkdYyU", "outputId": "86338ef9-2a2b-44a8-e551-9427deb5daa9" }, "execution_count": 10, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Cloning into 'TinyLlama-1.1B-Chat-v1.0'...\n", "remote: Enumerating objects: 60, done.\u001b[K\n", "remote: Counting objects: 100% (57/57), done.\u001b[K\n", "remote: Compressing objects: 100% (57/57), done.\u001b[K\n", "remote: Total 60 (delta 21), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n", "Unpacking objects: 100% (60/60), 519.98 KiB | 2.71 MiB/s, done.\n" ] } ] }, { "cell_type": "code", "source": [ "import os\n", "print(os.getcwd())" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "yQJ_Ay3WdYwB", "outputId": "080ff8a9-112e-4738-990f-f97d0fea6081" }, "execution_count": 11, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "/content/SpQR\n" ] } ] }, { "cell_type": "code", "source": [ "print(os.getenv(\"HF_HOME\"))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "uhSZozOVld89", "outputId": "a4ce5c8a-5318-4010-8eb4-47297df11251" }, "execution_count": 12, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "None\n" ] } ] }, { "cell_type": "code", "source": [ "from huggingface_hub import snapshot_download\n", "\n", "model_repo = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\"\n", "local_dir = snapshot_download(repo_id=model_repo)\n", "print(f\"Model downloaded to: {local_dir}\")\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 514, "referenced_widgets": [ "ef495d16dd1a4f23be512d86f4b2800b", "a71f86b74b7f42d88266be2bc79a2c30", "cb557d42a7d345c0934604036a93bc10", "c95e9deefff24265bb7aaefcee32a044", "7c4e99924b9449bc8a930002d8ba83fc", "750d241ac10e4d06903aad102164d983", "aa9cce0280794b9aae6074653ec61636", "1946cfddd06743b588ae787a0cea42aa", "c0625a79528f48dc8ee64459d2909b79", "adb22899471442589285fd41312a503f", "a6e55e6f062143e7823fc585a530fc56", "c4f91f5988cf4e2abababec9e5904a73", "686fe40fc8924f65843cd6029d719bc5", "34de9719c9ee465493ae92912eff1989", "a97203da20354f708de631b59fc42e0e", "e4188c6d219141f7bd1e15dd05d1bb1a", "1133635a5e6947de89b7ba00339d8fc5", "b68f3994adc24215bbe0b07329a7a811", "b4fa7ff09fc149309150fb56acf5cb92", "6a0623311261475f989c6d8e3e17cb87", "9fc84d5a4ffd47858ee1ff674d5b2b68", "351b929d9fd442328f0b9cf8af9c8f0f", "e0a2fdf5f7c8420abea56470a099cf96", "80b3597ba1634c1bbc511f8beabef0bb", "86eb445c83fc4fdd8471ae3c1190d244", "5f55e430c0e8427b95e0e428074359b8", "d61162836a35450dbb43622b4d7603b1", "8b109b26541042fdafef1ce9a0f36472", "d3a13151ff334b778ad9dc3020b205cb", "3661e1e07bc1448c998c7fefd5270dab", "b3b5b109dfec414aba0eecd379a47466", "38be34645710407e94c18b1f6817ed43", "8b054e76588144a6ab6c2633a65c5ee0", "b2719a37c1da4e4baba835fb5906e4e8", "0d818aaeee424148a2316917e5c069da", "f54cb3dbfeac4313ad0464ff3fb96dac", "809986e2166947b38c5eed95a18efa8a", "55dd322d5c1f443fbdd5a45617a91116", "bf434f07b35844ca87f9f5c28d16e4a9", "e730394b81db4c7ca5feeac4a525f344", "8519cf30feb440eda826f6beaf1646b2", "1605a710077b412c9a5176cd285d0ea6", "ad17f55244f34f4e9fc82aafab34b538", "20dd6544bee74c019ec23272cac6e0ba", "6b770f28de264dc7bf61588443f4e865", "6100ed8b785f4550934154598059a33c", "862f8584e1734baa860be6f77174bbc6", "f189ddb799c144bcaa85484a4fe270a9", "3a56d7bcae3646e99f0d5e44f7c62f6d", "7a6f706aaf2f4d63a43b26e592e31787", "a103635d634c4aebb5fad37e83b16c6a", "9588e29345ba46329262a01250007989", "2afd5aabc2734fee9c4291a96f6b94b4", "cf5a5122e6464c0089d6d1f0bcd654e4", "2ce6e39cf73b449db00e73587e8b960d", "658981420ec74c32b9a5aa2fd12d65fb", "1680e40f7f634a4dbe26fc80d26d019f", "7352763c56e44cf6b01e6f35cbc45f6c", "1a74f2892d284c438dc9f8e979236c46", "f2620c076e7245e9bb64c047189cef8f", "e854978dea614a6184cfdbe908dbbb7d", "62feb19f455347c9ba026157b1aa8c6c", "c045dbabf97248f2bc92fd511d0914ff", "a8a4df10db514857b24002267415cbb4", "48a041c2e9524059b5f36edc99ae77fc", "53d706caff2f4b968d8ddaed3449475c", "d22fc1e159ac4ab1a9fa1562af765cc7", "ab31e4e465b445bc88ccda012e39c9e8", "69d7dd7f4f9b4bf29f4185ba49abe03a", "8982da26b3ab4a17801f13d90175a62d", "2919034923814f11a86b9b6ff6c2f3fa", "0fe23be8273c448bb454b37342be6085", "99ebf39523d34ee7976cf685d15f2ba7", "33f687ead6784ae7a2e15e7e0a0b1036", "088a7da6b99c4c63b9a3fd15aa25ee0b", "8b9026ff40284939b49d8d287641df28", "4b1c7a48d23b46179e9cef5130df6399", "2643002917114763920f0421fc83bc67", "affa587d803f4476b39dafba6b465c11", "0fe75d35713f4e578bb22d57124e6b91", "cecf91c366e643058d61e6acca9512c1", "41125f5d4d0d48b080208754c0462524", "b1937d82a61f4d4fa0431a3c558748ab", "53ee84296103418dbbc5f3ea0a3d2ad4", "fd61b8725e3f41e1afe7e7e29d99c417", "0826103756d94005849f45cdbcb1d9fd", "efd79e28736c4bd48c856e7646b303ac", "0265104c4e7747fd9087792de45803c8", "8c2867ee87534277931486bd4032f7e0", "95076527f50d4d8fbcd02933393f476a", "0690ada1b0b44e1b8112de6813666fcf", "9e386007d0f3409fb650329f81f84d81", "575806acf4a94ff4b88546d90f486f32", "bb91269428644df1babd1ae39341ec33", "a19b5850abca49348553d87cc9695d2b", "e9ecc447d5aa4a5f9341c94aecdeb403", "26b2822ca8904593aa2a95d23068fcbb", "5e2dd7e5d39f4645ad53cb92ee056c02", "504cf356c80e40c69d80d6af2bda4d19", "de310b63d1c8418388992fe569036203", "52c870a107ff45ccac57fedfe40d5135", "8155e6ea360e41f89e3f8432fc1a5314", "59c98ddd8a6e44ed88e6785bfcac8821", "8981e41b49bf4482b5903d3852ac0f02", "e2c7a889c4704065a862f00c5b0f59d5", "c2191171dd014e29816ff9da1c29003a", "b38f03393e084cd8a60fccc37423e806", "8493e8b0e2d2455cb98161191da9727f", "6e42adf16d3343cba5d35cf25777598e", "81a52af510494f10a6acb9f449f41e20", "06866706b5e24918b71ead17a4d85beb", "492562169b04462f9d36375a5e4bb3fb", "2c4edd5214de459fb2d8862944adb7da", "0eebb5586f1e4b649bb375e79f5bec63", "87160fec94c049fc808034e6cbc652c1", "246acc02a5e5491c910a48b868d2a295", "0fc5be4037a94e92893120f1c5d30b17", "35491086cd6248da9ce15da93519273a", "af8c9143672c484da309f3e8c486a118", "36b7aa8e2c7249278838c6190fd8af98", "973354c51a6244a9812dcd3a62b4a55a" ] }, "id": "Hd5hXTCrqvmA", "outputId": "8c324d7d-ec1d-46d3-ade8-e9b3f11e632c" }, "execution_count": 13, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n", "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", "You will be able to reuse this secret in all of your notebooks.\n", "Please note that authentication is recommended but still optional to access public models or datasets.\n", " warnings.warn(\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "Fetching 10 files: 0%| | 0/10 [00:00\n", " quantize_model(model, args, device)\n", " File \"/content/SpQR/main.py\", line 89, in quantize_model\n", " results = quantize_spqr(model, dataloader, args, device)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py\", line 116, in decorate_context\n", " return func(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^\n", " File \"/content/SpQR/main.py\", line 230, in quantize_spqr\n", " outs[j] = layer(inps[j].to(layer_dev).unsqueeze(0), **forward_args)[0]\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_layers.py\", line 83, in __call__\n", " return super().__call__(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1739, in _wrapped_call_impl\n", " return self._call_impl(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1750, in _call_impl\n", " return forward_call(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/models/llama/modeling_llama.py\", line 290, in forward\n", " hidden_states, self_attn_weights = self.self_attn(\n", " ^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1739, in _wrapped_call_impl\n", " return self._call_impl(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1750, in _call_impl\n", " return forward_call(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/models/llama/modeling_llama.py\", line 235, in forward\n", " cos, sin = position_embeddings\n", " ^^^^^^^^\n", "TypeError: cannot unpack non-iterable NoneType object\n" ] } ] }, { "cell_type": "code", "source": [ "print(model.dtype)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rdZmVaVUldt_", "outputId": "e19fb060-4d46-4177-caf4-d6c3f0c12129" }, "execution_count": 18, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "torch.bfloat16\n" ] } ] }, { "cell_type": "code", "source": [ "print(model.parameters)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "0zbn6B4GldqQ", "outputId": "00f8a712-17c5-4b51-ec11-9fec18a89ddf" }, "execution_count": 19, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n" ] } ] }, { "cell_type": "code", "source": [ "print(model.forward)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SOTz41u8ldlp", "outputId": "75a24675-93c8-42b2-a885-8932e45f4f0a" }, "execution_count": 20, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n" ] } ] }, { "cell_type": "markdown", "source": [ "To resolve the error, AI suggested to build a Wrapper class that intercepts the call. We tried it out but in the end, the same mistake arised." ], "metadata": { "id": "gGJt1tAEF3xu" } }, { "cell_type": "code", "source": [ "import torch\n", "\n", "class RotaryWrapper(torch.nn.Module):\n", " def __init__(self, model):\n", " super().__init__()\n", " self.model = model\n", "\n", " def forward(self, *args, **kwargs):\n", " # Inject rotary embeddings before forward\n", " if \"position_embeddings\" not in kwargs or kwargs[\"position_embeddings\"] is None:\n", " seq_len = kwargs[\"input_ids\"].shape[1]\n", " kwargs[\"position_embeddings\"] = self.model.model.rotary_emb(seq_len)\n", " return self.model(*args, **kwargs)\n" ], "metadata": { "id": "r9kpGVRYldgx" }, "execution_count": 21, "outputs": [] }, { "cell_type": "code", "source": [ "model = RotaryWrapper(model)" ], "metadata": { "id": "j_dlynFildcg" }, "execution_count": 22, "outputs": [] }, { "cell_type": "code", "source": [ "!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n", " \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n", " --outlier_threshold=0.2 --nsamples 128" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ddNqS2WXldaQ", "outputId": "cdae9172-0774-45cb-8ebf-6dd553b9353f" }, "execution_count": 23, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "============ Loading model... ============\n", "Loading pretrained model ...\n", "2025-07-24 16:43:21.156604: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "E0000 00:00:1753375401.189309 4136 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "E0000 00:00:1753375401.195550 4136 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", "Model loaded sucessfully ...\n", "\n", "============ Quantizing model... ============\n", "Loading data ...\n", "Loaded data from pajama; len(data)=128\n", "\n", "Starting SPQR quantization ...\n", "catching inputs from data\n", "\n", "---------------- Layer 0 of 22 ----------------\n", "layer_dev_original=device(type='cpu')\n", "Traceback (most recent call last):\n", " File \"/content/SpQR/main.py\", line 582, in \n", " quantize_model(model, args, device)\n", " File \"/content/SpQR/main.py\", line 89, in quantize_model\n", " results = quantize_spqr(model, dataloader, args, device)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py\", line 116, in decorate_context\n", " return func(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^\n", " File \"/content/SpQR/main.py\", line 230, in quantize_spqr\n", " outs[j] = layer(inps[j].to(layer_dev).unsqueeze(0), **forward_args)[0]\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_layers.py\", line 83, in __call__\n", " return super().__call__(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1739, in _wrapped_call_impl\n", " return self._call_impl(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1750, in _call_impl\n", " return forward_call(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/models/llama/modeling_llama.py\", line 290, in forward\n", " hidden_states, self_attn_weights = self.self_attn(\n", " ^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1739, in _wrapped_call_impl\n", " return self._call_impl(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py\", line 1750, in _call_impl\n", " return forward_call(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/models/llama/modeling_llama.py\", line 235, in forward\n", " cos, sin = position_embeddings\n", " ^^^^^^^^\n", "TypeError: cannot unpack non-iterable NoneType object\n" ] } ] }, { "cell_type": "markdown", "source": [ "The problem are the rotary embeddings." ], "metadata": { "id": "ZA_NQyaWIq-w" } }, { "cell_type": "code", "source": [ "model.eval()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "b4VDusobIqzS", "outputId": "8940425b-a42b-4d52-be77-4fb2fab9dd99" }, "execution_count": 24, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "RotaryWrapper(\n", " (model): LlamaForCausalLM(\n", " (model): LlamaModel(\n", " (embed_tokens): Embedding(32000, 2048)\n", " (layers): ModuleList(\n", " (0-21): 22 x LlamaDecoderLayer(\n", " (self_attn): LlamaAttention(\n", " (q_proj): Linear(in_features=2048, out_features=2048, bias=False)\n", " (k_proj): Linear(in_features=2048, out_features=256, bias=False)\n", " (v_proj): Linear(in_features=2048, out_features=256, bias=False)\n", " (o_proj): Linear(in_features=2048, out_features=2048, bias=False)\n", " )\n", " (mlp): LlamaMLP(\n", " (gate_proj): Linear(in_features=2048, out_features=5632, bias=False)\n", " (up_proj): Linear(in_features=2048, out_features=5632, bias=False)\n", " (down_proj): Linear(in_features=5632, out_features=2048, bias=False)\n", " (act_fn): SiLU()\n", " )\n", " (input_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n", " (post_attention_layernorm): LlamaRMSNorm((2048,), eps=1e-05)\n", " )\n", " )\n", " (norm): LlamaRMSNorm((2048,), eps=1e-05)\n", " (rotary_emb): LlamaRotaryEmbedding()\n", " )\n", " (lm_head): Linear(in_features=2048, out_features=32000, bias=False)\n", " )\n", ")" ] }, "metadata": {}, "execution_count": 24 } ] }, { "cell_type": "markdown", "source": [ "Since the internet does not really help (nothing related to this specific error), we used AI to help resolve this issue.\n", "\n", "The first suggestion is to inspect config.json and look for embedding keyword or something similar. In particular, MS Copilot suggested to look for:\n", "- keyword rope_scaling which is set to linear and a factor, for example 1.0\n", "- or use_rotary_embeddings: true\n", "\n", "Navigating and displaying the content of config.json we see the following output:\n", "\n", "\n", "\n", "```\n", "# Als Code formatiert\n", "{\n", " \"architectures\": [\n", " \"LlamaForCausalLM\"\n", " ],\n", " \"attention_bias\": false,\n", " \"bos_token_id\": 1,\n", " \"eos_token_id\": 2,\n", " \"hidden_act\": \"silu\",\n", " \"hidden_size\": 2048,\n", " \"initializer_range\": 0.02,\n", " \"intermediate_size\": 5632,\n", " \"max_position_embeddings\": 2048,\n", " \"model_type\": \"llama\",\n", " \"num_attention_heads\": 32,\n", " \"num_hidden_layers\": 22,\n", " \"num_key_value_heads\": 4,\n", " \"pretraining_tp\": 1,\n", " \"rms_norm_eps\": 1e-05,\n", " \"rope_scaling\": null,\n", " \"rope_theta\": 10000.0,\n", " \"tie_word_embeddings\": false,\n", " \"torch_dtype\": \"bfloat16\",\n", " \"transformers_version\": \"4.35.0\",\n", " \"use_cache\": true,\n", " \"vocab_size\": 32000\n", "}\n", "```\n", "\n", "We see that we have the key rope_scaling, however, it is set to null. Seems to be disabled in TinyLlama by default.\n", "\n", "I have found a config.json file from another ([ HF repo](https://huggingface.co/elvircrn/Llama-2-7b-SPQR-3Bit-16x16-red_pajama-hf/blob/main/config.json) that specifies more json keys. The idea is to add those keys in my TinyLlama config.json with the hope that this somehow works. In partiluar, the referenced config.json adds \"quantization_config\" key. We will try this.\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "metadata": { "id": "-HoaOqk2L2wr" } }, { "cell_type": "code", "source": [ "\n", "json_file = \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6/config.json\"\n", "\n", "with open(json_file) as json_file:\n", " file_contents = json_file.read()\n", "\n", "print(file_contents)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "kQ2dvNWUL2nA", "outputId": "c96a4106-7e51-43f6-fa5d-91b899b1bf7f" }, "execution_count": 25, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "{\n", " \"architectures\": [\n", " \"LlamaForCausalLM\"\n", " ],\n", " \"attention_bias\": false,\n", " \"bos_token_id\": 1,\n", " \"eos_token_id\": 2,\n", " \"hidden_act\": \"silu\",\n", " \"hidden_size\": 2048,\n", " \"initializer_range\": 0.02,\n", " \"intermediate_size\": 5632,\n", " \"max_position_embeddings\": 2048,\n", " \"model_type\": \"llama\",\n", " \"num_attention_heads\": 32,\n", " \"num_hidden_layers\": 22,\n", " \"num_key_value_heads\": 4,\n", " \"pretraining_tp\": 1,\n", " \"rms_norm_eps\": 1e-05,\n", " \"rope_scaling\": null,\n", " \"rope_theta\": 10000.0,\n", " \"tie_word_embeddings\": false,\n", " \"torch_dtype\": \"bfloat16\",\n", " \"transformers_version\": \"4.35.0\",\n", " \"use_cache\": true,\n", " \"vocab_size\": 32000\n", "}\n", "\n" ] } ] }, { "cell_type": "code", "source": [ "import json\n", "\n", "json_file_path = \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6/config.json\"\n", "\n", "with open(json_file_path, \"r\") as json_file:\n", " data = json.load(json_file)\n", "\n", "data[\"quantization_config\"] = {\n", " \"quant_method\": \"spqr\",\n", " \"beta1\": 16,\n", " \"beta2\": 16,\n", " \"bits\": 3\n", "}\n", "\n", "with open(json_file_path, \"w\") as json_file:\n", " json.dump(data, json_file, indent=2)\n", "\n", "with open(json_file_path) as json_file:\n", " file_contents = json_file.read()\n", "\n", "print(file_contents)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fMSxUrt0IqmI", "outputId": "5e830df0-9a62-49d5-bef8-bc17f19554f1" }, "execution_count": 26, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "{\n", " \"architectures\": [\n", " \"LlamaForCausalLM\"\n", " ],\n", " \"attention_bias\": false,\n", " \"bos_token_id\": 1,\n", " \"eos_token_id\": 2,\n", " \"hidden_act\": \"silu\",\n", " \"hidden_size\": 2048,\n", " \"initializer_range\": 0.02,\n", " \"intermediate_size\": 5632,\n", " \"max_position_embeddings\": 2048,\n", " \"model_type\": \"llama\",\n", " \"num_attention_heads\": 32,\n", " \"num_hidden_layers\": 22,\n", " \"num_key_value_heads\": 4,\n", " \"pretraining_tp\": 1,\n", " \"rms_norm_eps\": 1e-05,\n", " \"rope_scaling\": null,\n", " \"rope_theta\": 10000.0,\n", " \"tie_word_embeddings\": false,\n", " \"torch_dtype\": \"bfloat16\",\n", " \"transformers_version\": \"4.35.0\",\n", " \"use_cache\": true,\n", " \"vocab_size\": 32000,\n", " \"quantization_config\": {\n", " \"quant_method\": \"spqr\",\n", " \"beta1\": 16,\n", " \"beta2\": 16,\n", " \"bits\": 3\n", " }\n", "}\n" ] } ] }, { "cell_type": "code", "source": [ "!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n", " \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n", " --outlier_threshold=0.2 --nsamples 128" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "QMug2uyEldX6", "outputId": "f17048ad-7903-4ddb-9d58-21dfd55075b1" }, "execution_count": 27, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "============ Loading model... ============\n", "Loading pretrained model ...\n", "2025-07-24 16:43:34.667534: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "E0000 00:00:1753375414.688225 4234 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "E0000 00:00:1753375414.694807 4234 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", "Traceback (most recent call last):\n", " File \"/content/SpQR/main.py\", line 577, in \n", " model = get_model(args.model_path, args.load, args.dtype).train(False)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/content/SpQR/modelutils.py\", line 45, in get_model\n", " model = AutoModelForCausalLM.from_pretrained(\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/models/auto/auto_factory.py\", line 600, in from_pretrained\n", " return model_class.from_pretrained(\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 311, in _wrapper\n", " return func(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 4648, in from_pretrained\n", " hf_quantizer.validate_environment(\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/quantizers/quantizer_spqr.py\", line 52, in validate_environment\n", " raise ImportError(\"Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`\")\n", "ImportError: Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`\n" ] } ] }, { "cell_type": "code", "source": [ "!pip install spqr_quant[gpu]" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "XTEI-bEzldTM", "outputId": "46f18a7d-711e-42b5-b93d-ae2e0f445ec2" }, "execution_count": 29, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting spqr_quant[gpu]\n", " Downloading spqr_quant-0.2.0-py3-none-any.whl.metadata (6.4 kB)\n", "Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (2.6.0+cu124)\n", "Requirement already satisfied: transformers>=4.44.0 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (4.53.2)\n", "Requirement already satisfied: safetensors>=0.4.5 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (0.5.3)\n", "Collecting ninja (from spqr_quant[gpu])\n", " Downloading ninja-1.11.1.4-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata (5.0 kB)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.18.0)\n", "Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (4.14.1)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.5)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.1.6)\n", "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (2023.10.0)\n", "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (9.1.0.70)\n", "Requirement already satisfied: nvidia-cublas-cu12==12.4.5.8 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.5.8)\n", "Requirement already satisfied: nvidia-cufft-cu12==11.2.1.3 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (11.2.1.3)\n", "Requirement already satisfied: nvidia-curand-cu12==10.3.5.147 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (10.3.5.147)\n", "Requirement already satisfied: nvidia-cusolver-cu12==11.6.1.9 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (11.6.1.9)\n", "Requirement already satisfied: nvidia-cusparse-cu12==12.3.1.170 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.3.1.170)\n", "Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (0.6.2)\n", "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (2.21.5)\n", "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: nvidia-nvjitlink-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.2.0)\n", "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (1.13.1)\n", "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=2.4.0->spqr_quant[gpu]) (1.3.0)\n", "Requirement already satisfied: huggingface-hub<1.0,>=0.30.0 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (0.33.4)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2.0.2)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (25.0)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (6.0.2)\n", "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2024.11.6)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2.32.3)\n", "Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (0.21.2)\n", "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (4.67.1)\n", "Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.30.0->transformers>=4.44.0->spqr_quant[gpu]) (1.1.5)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=2.4.0->spqr_quant[gpu]) (3.0.2)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (3.4.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (2.5.0)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (2025.7.14)\n", "Downloading ninja-1.11.1.4-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (422 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m422.8/422.8 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading spqr_quant-0.2.0-py3-none-any.whl (20 kB)\n", "Installing collected packages: ninja, spqr_quant\n", "Successfully installed ninja-1.11.1.4 spqr_quant-0.2.0\n" ] } ] }, { "cell_type": "code", "source": [ "!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n", " \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n", " --outlier_threshold=0.2 --nsamples 128" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "b8heHWLJUm13", "outputId": "2c5175c7-a15e-471a-94aa-da1d3fe0dda9" }, "execution_count": 30, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "============ Loading model... ============\n", "Loading pretrained model ...\n", "2025-07-24 16:44:47.113163: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "E0000 00:00:1753375487.147590 4557 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "E0000 00:00:1753375487.158582 4557 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", "Traceback (most recent call last):\n", " File \"/content/SpQR/main.py\", line 577, in \n", " model = get_model(args.model_path, args.load, args.dtype).train(False)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/content/SpQR/modelutils.py\", line 45, in get_model\n", " model = AutoModelForCausalLM.from_pretrained(\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/models/auto/auto_factory.py\", line 600, in from_pretrained\n", " return model_class.from_pretrained(\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 311, in _wrapper\n", " return func(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 4655, in from_pretrained\n", " torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/quantizers/quantizer_spqr.py\", line 59, in update_torch_dtype\n", " raise ValueError(\n", "ValueError: You cannot use any type other than torch.float16 for SpQR. Please either leave it None or set it totorch.float16 explicitly.\n" ] } ] }, { "cell_type": "code", "source": [ "json_string = '''\n", "{\n", " \"architectures\": [\n", " \"LlamaForCausalLM\"\n", " ],\n", " \"attention_bias\": false,\n", " \"bos_token_id\": 1,\n", " \"eos_token_id\": 2,\n", " \"hidden_act\": \"silu\",\n", " \"hidden_size\": 2048,\n", " \"initializer_range\": 0.02,\n", " \"intermediate_size\": 5632,\n", " \"max_position_embeddings\": 2048,\n", " \"model_type\": \"llama\",\n", " \"num_attention_heads\": 32,\n", " \"num_hidden_layers\": 22,\n", " \"num_key_value_heads\": 4,\n", " \"pretraining_tp\": 1,\n", " \"rms_norm_eps\": 1e-05,\n", " \"rope_scaling\": null,\n", " \"rope_theta\": 10000.0,\n", " \"tie_word_embeddings\": false,\n", " \"torch_dtype\": \"bfloat16\",\n", " \"transformers_version\": \"4.35.0\",\n", " \"use_cache\": true,\n", " \"vocab_size\": 32000,\n", " \"quantization_config\": {\n", " \"quant_method\": \"spqr\",\n", " \"beta1\": 16,\n", " \"beta2\": 16,\n", " \"bits\": 3\n", " }\n", "}\n", "'''\n", "\n", "data = json.loads(json_string)\n", "data[\"torch_dtype\"] = \"bfloat16\"\n", "updated_str = json.dumps(data, indent=2)\n", "print(updated_str)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OfsLodJ1Umyv", "outputId": "379a4a77-f8a6-4002-eabb-e7b1148dc352" }, "execution_count": 44, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "{\n", " \"architectures\": [\n", " \"LlamaForCausalLM\"\n", " ],\n", " \"attention_bias\": false,\n", " \"bos_token_id\": 1,\n", " \"eos_token_id\": 2,\n", " \"hidden_act\": \"silu\",\n", " \"hidden_size\": 2048,\n", " \"initializer_range\": 0.02,\n", " \"intermediate_size\": 5632,\n", " \"max_position_embeddings\": 2048,\n", " \"model_type\": \"llama\",\n", " \"num_attention_heads\": 32,\n", " \"num_hidden_layers\": 22,\n", " \"num_key_value_heads\": 4,\n", " \"pretraining_tp\": 1,\n", " \"rms_norm_eps\": 1e-05,\n", " \"rope_scaling\": null,\n", " \"rope_theta\": 10000.0,\n", " \"tie_word_embeddings\": false,\n", " \"torch_dtype\": \"bfloat16\",\n", " \"transformers_version\": \"4.35.0\",\n", " \"use_cache\": true,\n", " \"vocab_size\": 32000,\n", " \"quantization_config\": {\n", " \"quant_method\": \"spqr\",\n", " \"beta1\": 16,\n", " \"beta2\": 16,\n", " \"bits\": 3\n", " }\n", "}\n" ] } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "xAp8jlPLX04m" }, "execution_count": 42, "outputs": [] }, { "cell_type": "code", "source": [ "!python main.py \"/root/.cache/huggingface/hub/models--TinyLlama--TinyLlama-1.1B-Chat-v1.0/snapshots/fe8a4ea1ffedaf415f4da2f062534de366a451e6\" \\\n", " \"pajama\" --wbits 4 --groupsize 16 --perchannel \\\n", " --outlier_threshold=0.2 --nsamples 128" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "chqw-1G6UmwH", "outputId": "721c2c70-785d-4de4-e66d-5c35a746cad4" }, "execution_count": 43, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "============ Loading model... ============\n", "Loading pretrained model ...\n", "2025-07-24 17:00:29.814365: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "E0000 00:00:1753376429.834383 8639 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "E0000 00:00:1753376429.841005 8639 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", "Traceback (most recent call last):\n", " File \"/content/SpQR/main.py\", line 577, in \n", " model = get_model(args.model_path, args.load, args.dtype).train(False)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/content/SpQR/modelutils.py\", line 45, in get_model\n", " model = AutoModelForCausalLM.from_pretrained(\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/models/auto/auto_factory.py\", line 600, in from_pretrained\n", " return model_class.from_pretrained(\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 311, in _wrapper\n", " return func(*args, **kwargs)\n", " ^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\", line 4655, in from_pretrained\n", " torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/usr/local/lib/python3.11/dist-packages/transformers/quantizers/quantizer_spqr.py\", line 59, in update_torch_dtype\n", " raise ValueError(\n", "ValueError: You cannot use any type other than torch.float16 for SpQR. Please either leave it None or set it totorch.float16 explicitly.\n" ] } ] }, { "cell_type": "code", "source": [ "!pip install spqr_quant[gpu]" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ts59qeGLd_I9", "outputId": "cdd406aa-e534-4e68-b2b4-62853ee66b79" }, "execution_count": 49, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Requirement already satisfied: spqr_quant[gpu] in /usr/local/lib/python3.11/dist-packages (0.2.0)\n", "Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (2.6.0+cu124)\n", "Requirement already satisfied: transformers>=4.44.0 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (4.53.2)\n", "Requirement already satisfied: safetensors>=0.4.5 in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (0.5.3)\n", "Requirement already satisfied: ninja in /usr/local/lib/python3.11/dist-packages (from spqr_quant[gpu]) (1.11.1.4)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.18.0)\n", "Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (4.14.1)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.5)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.1.6)\n", "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (2023.10.0)\n", "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (9.1.0.70)\n", "Requirement already satisfied: nvidia-cublas-cu12==12.4.5.8 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.5.8)\n", "Requirement already satisfied: nvidia-cufft-cu12==11.2.1.3 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (11.2.1.3)\n", "Requirement already satisfied: nvidia-curand-cu12==10.3.5.147 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (10.3.5.147)\n", "Requirement already satisfied: nvidia-cusolver-cu12==11.6.1.9 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (11.6.1.9)\n", "Requirement already satisfied: nvidia-cusparse-cu12==12.3.1.170 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.3.1.170)\n", "Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (0.6.2)\n", "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (2.21.5)\n", "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: nvidia-nvjitlink-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (12.4.127)\n", "Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (3.2.0)\n", "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->spqr_quant[gpu]) (1.13.1)\n", "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=2.4.0->spqr_quant[gpu]) (1.3.0)\n", "Requirement already satisfied: huggingface-hub<1.0,>=0.30.0 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (0.33.4)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2.0.2)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (25.0)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (6.0.2)\n", "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2024.11.6)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (2.32.3)\n", "Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (0.21.2)\n", "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.44.0->spqr_quant[gpu]) (4.67.1)\n", "Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.30.0->transformers>=4.44.0->spqr_quant[gpu]) (1.1.5)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=2.4.0->spqr_quant[gpu]) (3.0.2)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (3.4.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (2.5.0)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers>=4.44.0->spqr_quant[gpu]) (2025.7.14)\n" ] } ] }, { "cell_type": "code", "source": [ "from transformers import AutoModelForCausalLM, AutoTokenizer\n", "\n", "model_name_path = local_dir\n", "\n", "model_dtype = AutoModelForCausalLM.from_pretrained(model_name_path,\n", " torch_dtype=torch.float16,\n", " device_map=\"auto\",\n", " trust_remote_code=True\n", " )\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 578 }, "id": "ZkoJFkweUmtv", "outputId": "18b09a5c-3f43-4dc5-b7e5-99a3163b26cd" }, "execution_count": 52, "outputs": [ { "output_type": "error", "ename": "ImportError", "evalue": "Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/tmp/ipython-input-52-2491796096.py\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mmodel_name_path\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlocal_dir\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m model_dtype = AutoModelForCausalLM.from_pretrained(model_name_path, \n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mtorch_dtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat16\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mdevice_map\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"auto\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/models/auto/auto_factory.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 598\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmodel_class\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig_class\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msub_configs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"text_config\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 599\u001b[0m \u001b[0mconfig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_text_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 600\u001b[0;31m return model_class.from_pretrained(\n\u001b[0m\u001b[1;32m 601\u001b[0m \u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmodel_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mhub_kwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 602\u001b[0m )\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36m_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0mold_dtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_default_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 310\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 311\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 312\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 313\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_default_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mold_dtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, weights_only, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 4646\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4647\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhf_quantizer\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4648\u001b[0;31m hf_quantizer.validate_environment(\n\u001b[0m\u001b[1;32m 4649\u001b[0m \u001b[0mtorch_dtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch_dtype\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4650\u001b[0m \u001b[0mfrom_tf\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfrom_tf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/quantizers/quantizer_spqr.py\u001b[0m in \u001b[0;36mvalidate_environment\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_spqr_available\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate_torch_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtorch_dtype\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"torch.dtype\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;34m\"torch.dtype\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mImportError\u001b[0m: Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`", "", "\u001b[0;31m---------------------------------------------------------------------------\u001b[0;32m\nNOTE: If your import is failing due to a missing package, you can\nmanually install dependencies using either !pip or !apt.\n\nTo view examples of installing some common dependencies, click the\n\"Open Examples\" button below.\n\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n" ], "errorDetails": { "actions": [ { "action": "open_url", "actionText": "Open Examples", "url": "/notebooks/snippets/importing_libraries.ipynb" } ] } } ] }, { "cell_type": "code", "source": [ "import spqr_quant" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "aob87KQfUmrA", "outputId": "0a285444-eb56-4576-be47-b955b13a3054" }, "execution_count": 54, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py:2059: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. \n", "If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].\n", " warnings.warn(\n" ] }, { "output_type": "error", "ename": "RuntimeError", "evalue": "Error building extension 'spqr_cuda': [1/3] /usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output spqr_cuda_kernel.cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=compute_75 -gencode=arch=compute_75,code=sm_75 --compiler-options '-fPIC' -O3 -arch=native -lineinfo -std=c++17 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu -o spqr_cuda_kernel.cuda.o \nFAILED: spqr_cuda_kernel.cuda.o \n/usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output spqr_cuda_kernel.cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=compute_75 -gencode=arch=compute_75,code=sm_75 --compiler-options '-fPIC' -O3 -arch=native -lineinfo -std=c++17 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu -o spqr_cuda_kernel.cuda.o \n/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu(162): warning #177-D: variable \"SHARED_OFFSET\" was declared but never referenced\n static constexpr u32 SHARED_OFFSET = 32;\n ^\n\nRemark: The warnings can be suppressed with \"-diag-suppress \"\n\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 1315; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 2719; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 4115; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 5516; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 6941; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 8444; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 9876; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 11300; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 12727; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 14178; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 15594; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 17012; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 18422; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 19837; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 21276; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 22793; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 24239; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 25677; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 27118; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 28583; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas fatal : Ptx assembly aborted due to errors\n[2/3] c++ -MMD -MF spqr_cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda.cpp -o spqr_cuda.o \nIn file included from /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda.cpp:17:\n/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/common.cuh:89:31: warning: ‘maybe_unused’ attribute ignored [-Wattributes]\n 89 | [[maybe_unused]] int sanity{};\n | ^\nninja: build stopped: subcommand failed.\n", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mCalledProcessError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_run_ninja_build\u001b[0;34m(build_directory, verbose, error_prefix)\u001b[0m\n\u001b[1;32m 2208\u001b[0m \u001b[0mstdout_fileno\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2209\u001b[0;31m subprocess.run(\n\u001b[0m\u001b[1;32m 2210\u001b[0m \u001b[0mcommand\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/lib/python3.11/subprocess.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(input, capture_output, timeout, check, *popenargs, **kwargs)\u001b[0m\n\u001b[1;32m 570\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcheck\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mretcode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 571\u001b[0;31m raise CalledProcessError(retcode, process.args,\n\u001b[0m\u001b[1;32m 572\u001b[0m output=stdout, stderr=stderr)\n", "\u001b[0;31mCalledProcessError\u001b[0m: Command '['ninja', '-v']' returned non-zero exit status 1.", "\nThe above exception was the direct cause of the following exception:\n", "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/tmp/ipython-input-54-1571779815.py\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mspqr_quant\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0minference\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mQuantizedLinear\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0minference_kernels\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_spqr_mul_fused\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_spqr_mul_timer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_torch_mul_timer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/inference.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTensor\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m from .inference_kernels.cuda_kernel import (\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0mcall_dequantize_compressed\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0mcall_spqr_mul\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/cuda_kernel.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mCUDA_FOLDER\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirname\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m__file__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m SPQR_CUDA = load(\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"spqr_cuda\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0msources\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCUDA_FOLDER\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"spqr_cuda.cpp\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCUDA_FOLDER\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"spqr_cuda_kernel.cu\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda, is_python_module, is_standalone, keep_intermediates)\u001b[0m\n\u001b[1;32m 1378\u001b[0m ... verbose=True)\n\u001b[1;32m 1379\u001b[0m \"\"\"\n\u001b[0;32m-> 1380\u001b[0;31m return _jit_compile(\n\u001b[0m\u001b[1;32m 1381\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1382\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0msources\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msources\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0msources\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_jit_compile\u001b[0;34m(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda, is_python_module, is_standalone, keep_intermediates)\u001b[0m\n\u001b[1;32m 1796\u001b[0m \u001b[0msources\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhipified_sources\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1797\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1798\u001b[0;31m _write_ninja_file_and_build_library(\n\u001b[0m\u001b[1;32m 1799\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1800\u001b[0m \u001b[0msources\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msources\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_write_ninja_file_and_build_library\u001b[0;34m(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda, is_standalone)\u001b[0m\n\u001b[1;32m 1924\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1925\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'Building extension module {name}...'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstderr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1926\u001b[0;31m _run_ninja_build(\n\u001b[0m\u001b[1;32m 1927\u001b[0m \u001b[0mbuild_directory\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1928\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/torch/utils/cpp_extension.py\u001b[0m in \u001b[0;36m_run_ninja_build\u001b[0;34m(build_directory, verbose, error_prefix)\u001b[0m\n\u001b[1;32m 2223\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'output'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# type: ignore[union-attr]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2224\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34mf\": {error.output.decode(*SUBPROCESS_DECODE_ARGS)}\"\u001b[0m \u001b[0;31m# type: ignore[union-attr]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2225\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2226\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2227\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mRuntimeError\u001b[0m: Error building extension 'spqr_cuda': [1/3] /usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output spqr_cuda_kernel.cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=compute_75 -gencode=arch=compute_75,code=sm_75 --compiler-options '-fPIC' -O3 -arch=native -lineinfo -std=c++17 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu -o spqr_cuda_kernel.cuda.o \nFAILED: spqr_cuda_kernel.cuda.o \n/usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output spqr_cuda_kernel.cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=compute_75 -gencode=arch=compute_75,code=sm_75 --compiler-options '-fPIC' -O3 -arch=native -lineinfo -std=c++17 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu -o spqr_cuda_kernel.cuda.o \n/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda_kernel.cu(162): warning #177-D: variable \"SHARED_OFFSET\" was declared but never referenced\n static constexpr u32 SHARED_OFFSET = 32;\n ^\n\nRemark: The warnings can be suppressed with \"-diag-suppress \"\n\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 1315; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 2719; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 4115; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 5516; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 6941; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 8444; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 9876; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 11300; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 12727; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 14178; error : Feature 'cp.async.wait_all' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 15594; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 17012; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 18422; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 19837; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 21276; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 22793; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 24239; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 25677; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 27118; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas /tmp/tmpxft_0000469e_00000000-7_spqr_cuda_kernel.ptx, line 28583; error : Feature 'cp.async.wait_group' requires .target sm_80 or higher\nptxas fatal : Ptx assembly aborted due to errors\n[2/3] c++ -MMD -MF spqr_cuda.o.d -DTORCH_EXTENSION_NAME=spqr_cuda -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\\\"_gcc\\\" -DPYBIND11_STDLIB=\\\"_libstdcpp\\\" -DPYBIND11_BUILD_ABI=\\\"_cxxabi1011\\\" -isystem /usr/local/lib/python3.11/dist-packages/torch/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/torch/csrc/api/include -isystem /usr/local/lib/python3.11/dist-packages/torch/include/TH -isystem /usr/local/lib/python3.11/dist-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /usr/include/python3.11 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -c /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda.cpp -o spqr_cuda.o \nIn file included from /usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/spqr_cuda.cpp:17:\n/usr/local/lib/python3.11/dist-packages/spqr_quant/inference_kernels/common.cuh:89:31: warning: ‘maybe_unused’ attribute ignored [-Wattributes]\n 89 | [[maybe_unused]] int sanity{};\n | ^\nninja: build stopped: subcommand failed.\n" ] } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "3K0n9qecUmof" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "s_F_3NTkUml4" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "J0a1GvMQUmjX" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "Wc13uMCbUmg6" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "YWKQEfGLUmbx" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "VGV4tKjQUmZR" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "sRPPPAyXUmWZ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "Me7cQ7aVdYqn" }, "execution_count": 27, "outputs": [] } ] }